- Statement
- Application
- See also
- References
In mathematics, Siegel's identity refers to one of two formulae that are used in the resolution of Diophantine equations. StatementThe first formula is The second is ApplicationThe identities are used in translating Diophantine problems connected with integral points on hyperelliptic curves into S-unit equations. See alsoReferences- {{cite book | first=Alan | last=Baker | authorlink=Alan Baker (mathematician) | title=Transcendental Number Theory | publisher=Cambridge University Press | year=1975 | isbn=0-521-20461-5 | zbl=0297.10013 | page=40 }}
- {{cite book | first1=Alan | last1=Baker | authorlink1=Alan Baker (mathematician)| first2=Gisbert | last2= Wüstholz | authorlink2=Gisbert Wüstholz | title=Logarithmic Forms and Diophantine Geometry | series=New Mathematical Monographs | volume=9 | publisher=Cambridge University Press | year=2007 | isbn=978-0-521-88268-2 | zbl=1145.11004 | page=53 }}
- {{cite book | first1=Daniel S. | last1=Kubert | authorlink1=Daniel Kubert | first2=Serge | last2=Lang | authorlink2=Serge Lang | title=Modular Units | series= Grundlehren der Mathematischen Wissenschaften | volume=244 | year=1981 | isbn=0-387-90517-0 }}
- {{cite book | first=Serge | last=Lang | authorlink=Serge Lang | title=Elliptic Curves: Diophantine Analysis | volume=231 | series=Grundlehren der mathematischen Wissenschaften | publisher=Springer-Verlag | year=1978 | isbn=0-387-08489-4 }}
- {{cite book | title=The Algorithmic Resolution of Diophantine Equations | volume=41 | series=London Mathematical Society Student Texts | first=N. P. | last=Smart | authorlink=Nigel Smart (cryptographer) | publisher=Cambridge University Press | year=1998 | isbn=0-521-64633-2 | pages=36–37 }}
2 : Mathematical identities|Diophantine equations |