词条 | Undeniable signature |
释义 |
An undeniable signature is a digital signature scheme which allows the signer to be selective to whom they allow to verify signatures. The scheme adds explicit signature repudiation, preventing a signer later refusing to verify a signature by omission; a situation that would devalue the signature in the eyes of the verifier. It was invented by David Chaum and Hans van Antwerpen in 1989.[1] OverviewIn this scheme, a signer possessing a private key can publish a signature of a message. However, the signature reveals nothing to a recipient/verifier of the message and signature without taking part in either of two interactive protocols:
The motivation for the scheme is to allow the signer to choose to whom signatures are verified. However, that the signer might claim the signature is invalid at any later point, by refusing to take part in verification, would devalue signatures to verifiers. The disavowal protocol distinguishes these cases removing the signer's plausible deniability. It is important that the confirmation and disavowal exchanges are not transferable. They achieve this by having the property of zero-knowledge; both parties can create transcripts of both confirmation and disavowal that are indistinguishable, to a third-party, of correct exchanges. The designated verifier signature scheme improves upon deniable signatures by allowing, for each signature, the interactive portion of the scheme to be offloaded onto another party, a designated verifier, reducing the burden on the signer. Zero-knowledge protocolThe following protocol was suggested by David Chaum.[2] A group, G, is chosen in which the discrete logarithm problem is intractable, and all operation in the scheme take place in this group. Commonly, this will be the finite cyclic group of order p contained in Z/nZ, with p being a large prime number; this group is equipped with the group operation of integer multiplication modulo n. An arbitrary primitive element (or generator), g, of G is chosen; computed powers of g then combine obeying fixed axioms. Alice generates a key pair, randomly chooses a private key, x, and then derives and publishes the public key, y = gx. Message signing
Confirmation (i.e., avowal) protocolBob wishes to verify the signature, z, of m by Alice under the key, y.
Alice can cheat at step 2 by attempting to randomly guess s2. Disavowal protocolAlice wishes to convince Bob that z is not a valid signature of m under the key, gx; i.e., z ≠ mx. Alice and Bob have agreed an integer, k, which sets the computational burden on Alice and the likelihood that she should succeed by chance.
If Alice attempts to cheat at step 3 by guessing s at random, the probability of succeeding is 1/(k + 1). So, if k = 1023 and the protocol is conducted ten times, her chances are 1 to 2100. See also
References1. ^{{cite journal|last1=Chaum|first1=David|last2=van Antwerpen|first2=Hans|title=Undeniable Signatures|journal=LNCS|date=1990|volume=435|pages=212–216}} 2. ^{{cite journal|last1=Chaum|first1=David|title=Zero-Knowledge Undeniable Signatures|journal=Advances in Cryptology EUROCRYPT '90 Proceedings|date=1991|pages=458–462}} 2 : Cryptography|Digital signature schemes |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。