请输入您要查询的百科知识:

 

词条 2018 in archosaur paleontology
释义

  1. General research

  2. Pseudosuchians

     Research  New taxa 

  3. Non-avian dinosaurs

     Research  New taxa 

  4. Birds

     Research  New taxa 

  5. Pterosaurs

     Research  New taxa 

  6. Other archosaurs

     Research  New taxa 

  7. References

{{Year nav topic5|2018|archosaur paleontology|paleontology|science}}{{Portal|Paleontology|History of science|Dinosaurs}}

The year 2018 in archosaur paleontology was eventful. Archosaurs include the only living dinosaur group — birds — and the reptile crocodilians, plus all extinct dinosaurs, extinct crocodilian relatives, and pterosaurs. Archosaur palaeontology is the scientific study of those animals, especially as they existed before the Holocene Epoch began about 11,700 years ago. The year 2018 in paleontology included various significant developments regarding archosaurs.

This article records new taxa of fossil archosaurs of every kind that have been described during the year 2018, as well as other significant discoveries and events related to paleontology of archosaurs that occurred in the year 2018.

General research

  • A study on the morphology of dorsal vertebrae of extant and fossil archosaurs, and on its implications for inferring lung structure in non-avian dinosauriform archosaurs, is published by Brocklehurst, Schachner & Sellers (2018).[1][2]
  • A study on the hip joint mobility of the extant common quail, and its implications for inferring the hip joint range of motion in extinct ornithodirans, is published by Manafzadeh & Padian (2018).[3]
  • A study on the soft tissue anatomy of the hip joint in non-dinosaurian dinosauromorphs and early dinosaurs is published by Tsai et al. (2018).[4]
  • A study on the assembly of the body plan of birds along the whole avian stem-lineage, especially in non-avian dinosaurs, reconstructing the large-scale patterns of the evolution of bird-like traits in bird ancestors, is published by Cau (2018), who names new clades Dracohors and Maniraptoromorpha.[5]
  • A study on the histology of limb bones of Anchiornis, Aurornis, Eosinopteryx, Serikornis and Jeholornis, and on the dynamics of skeletal growth in these taxa, is published by Prondvai et al. (2018).[6]
  • Discovery of fossilised skin in specimens of Beipiaosaurus, Sinornithosaurus, Microraptor and Confuciusornis from the Early Cretaceous Jehol Biota is reported by McNamara et al. (2018).[7]
  • Two theropod bones, preserving shark and crocodyliform feeding traces and invertebrate traces, are described from the Upper Cretaceous (Maastrichtian) Navesink Formation (New Jersey, United States) by Brownstein (2018).[8]
  • A study on the relationship between bony and muscular features of the tongue in living archosaurs, and on the evolution of the morphology of the bony elements of the tongue in bird-line archosaurs, is published by Li, Zhou & Clarke (2018).[9]
  • A large assemblage of archosaur (dinosaur, pterosaur and crocodylomorph) tracks is described from the Cretaceous Naturita Formation (Utah, United States) by Lockley, Burton & Grondel (2018).[10]

Pseudosuchians

Research

  • A study on the jaw musculature and biomechanics of Venaticosuchus rusconii based on rediscovered cranial materials is published by Von Baczko (2018).[11]
  • Three differently sized braincases diagnosable as belonging to Parringtonia gracilis are described from the Triassic Manda Beds of Tanzania by Nesbitt et al. (2018).[12]
  • A study on the histology of osteoderms of Late Triassic aetosaurs from South America, including Aetosauroides scagliai, Aetobarbakinoides brasiliensis and Neoaetosauroides engaeus, is published by Cerda, Desojo & Scheyer (2018).[13]
  • Description of new skull material of Aetosauroides scagliai from the Santa Maria Supersequence (Brazil) and a study on the phylogenetic relationships of this species is published by Biacchi Brust et al. (2018).[14]
  • The first known natural endocast of an aetosaur (Neoaetosauroides engaeus) is described by von Baczko, Taborda & Desojo (2018).[15]
  • Redescription of the aetosaur species Calyptosuchus wellesi is published by Parker (2018).[16]
  • A study on the anatomy of the skeleton of Coahomasuchus chathamensis and on the phylogenetic relationships of aetosaurs is published by Hoffman, Heckert & Zanno (2018).[17]
  • A restudy of the referred material of Stagonolepis robertsoni housed at the Natural History Museum, London, evaluating the utility of this material for examining the phylogenetic relationships of S. robertsoni, is published by Parker (2018).[18]
  • Description of the forelimbs of Stagonolepis olenkae and a study on the probable use of the forelimbs by members of this species is published by Dróżdż (2018).[19]
  • New information on the bonebed from the Triassic Badong Formation in Sangzhi County (Hunan, China) preserving the majority of the known fossil material of Lotosaurus adentus is published by Hagen et al. (2018), who also reassess the provenance and age of the deposit.[20]
  • A study on the anatomy of the backbone of Poposaurus langstoni is published by Stefanic & Nesbitt (2018).[21]
  • A study on the morphology of the secondary palate in shartegosuchids, based on data from a new specimen of Shartegosuchus from the Ulan Malgait Formation (Mongolia), is published by Dollman et al. (2018).[22]
  • Description of the braincase and the brain endocast, vasculature, inner ear, and paratympanic pneumatic cavities of Steneosaurus bollensis and Cricosaurus araucanensis is published by Herrera, Leardi & Fernández (2018).[23]
  • A skull of a member of the genus Tyrannoneustes is described from the Middle Jurassic (Callovian) of Germany by Waskow, Grzegorczyk & Sander (2018).[24]
  • New specimen of Neuquensuchus universitas, providing new information on the skeletal anatomy of members of the species, is described from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation (Argentina) by Lio et al. (2018).[25]
  • A redescription of the anatomy of the skull of Notosuchus terrestris is published by Barrios et al. (2018).[26]
  • A study on the anatomy of the skull of Morrinhosuchus luziae is published by Iori et al. (2018).[27]
  • A study on the anatomic structures and tooth wear related to mastication in Caipirasuchus is published by Iori & Carvalho (2018).[28]
  • A study on the taphonomy of the baurusuchid specimens (as well as non-avian theropods and titanosaur sauropod dinosaurs) from the Upper Cretaceous Bauru Group (Brazil) is published by Bandeira et al. (2018), who argue that low diversity of known theropods in the Bauru Group might be caused by preservational biases, and does not conclusively indicate that baurusuchids outcompeted theropods as top predators in this area.[29]
  • A study on the evolution of the skull morphology of baurusuchids is published by Godoy et al. (2018).[30]
  • New baurusuchid fossils are described from the Upper Cretaceous (Santonian) Bajo de la Carpa Formation (Argentina) by Leardi, Pol & Gasparini (2018).[31]
  • A study on the bone microanatomy of Pepesuchus deiseae is published by Sena et al. (2018).[32]
  • Neosuchian crocodylomorph fossils are described from the Bathonian Peski locality in the Moscow Region (Russia) by Pashchenko et al. (2018), who note the similarity of Bathonian vertebrate faunas of the Moscow Region, United Kingdom, Western Siberia and Kyrgyzstan, which they interpret as indicative of faunal homogeneity on the territory of Laurasia.[33]
  • New fossil remains of Sarcosuchus are described from the Aptian-Albian deposits of the Tataouine Basin (Tunisia) by Dridi (2018).[34]
  • A revision of Trematochampsa taqueti and all fossil material assigned to the species is published by Meunier & Larsson (2018).[35]
  • Description of pelvic and femoral remains of allodaposuchids from the Upper Cretaceous of the Lo Hueco fossil site (Spain) is published by de Celis, Narváez & Ortega (2018).[36]
  • Fossils of a eusuchian crocodyliform are described from the Lower Cretaceous (Aptian) Khok Kruat Formation (Thailand) by Kubo et al. (2018), representing the oldest record of Asian eusuchians reported so far.[37]
  • Description of a new skull of Susisuchus anatoceps from the Lower Cretaceous Crato Formation (Brazil), providing new information on the anatomy of this species, and a study on the phylogenetic relationships of Susisuchus is published by Leite & Fortier (2018).[38]
  • A study on the taphonomic history of the holotype, paratypes and referred specimens of Isisfordia duncani is published by Syme & Salisbury (2018).[39]
  • A study on the phylogenetic relationships of Thoracosaurus, Eothoracosaurus, Eosuchus, Eogavialis and Argochampsa, evaluating whether they were closely related to the gharial, is published by Lee & Yates (2018).[40]
  • A study on the length proportion of limb elements in extant and fossil alligatoroid and crocodyloid crocodylians, as well as on the correlation of limb morphology and skull shape in these groups, is published by Iijima, Kubo & Kobayashi (2018).[41]
  • New specimen of Bottosaurus harlani is described from the Rowan Fossil Quarry, a Cretaceous–Paleogene locality in Mantua Township (New Jersey, United States) by Cossette & Brochu (2018).[42]
  • A reassessment of the anatomy and phylogenetic relationships of Asiatosuchus nanlingensis and Eoalligator chunyii is published by Wu, Li & Wang (2018), who reinstate the latter taxon as a species distinct from the former one.[43]
  • A study on the ontogenetic changes of the skull shape in extant caimans and its implications for the validity of the Miocene species Melanosuchus fisheri is published by Foth et al. (2018).[44]
  • A study on two fossil specimens of caimans from the late Pleistocene and early Holocene of Brazil, attempting to assign the fossils’ identity to one of the extant caiman species on the basis of records of their current distribution and paleoclimatic data, is published by Eduardo et al. (2018).[45]
  • A fragment of a mandible of a member of the genus Gryposuchus is described from the Miocene (≈18 Ma) Castillo Formation (Venezuela) by Solórzano, Núñez-Flores & Rincón (2018), representing the earliest record of the genus in South America reported so far.[46]
  • A revision of the type species of the genus Gryposuchus, G. jessei, is published by Souza et al. (2018).[47]
  • A revision of crocodilian fossils and taxa from the Calvert Cliffs (United States) is published by Weems (2018).[48]
  • Partial crocodylian skull from the Pleistocene of Taiwan, formerly regarded as lost during World War II, is rediscovered and redescribed by Ito et al. (2018), who assign this specimen to the genus Toyotamaphimeia.[49]
  • Fossils of large crocodylians, as well as tortoise fossils with feeding traces on them, are described from the Pleistocene of Aldabra (Seychelles) by Scheyer et al. (2018), who interpret their findings as indicating the occurrence of a predator–prey interaction between crocodylians and giant tortoises on Aldabra during the Late Pleistocene.[50]
  • Late Quaternary fossils representing a locally extinct population of the Cuban crocodile (Crocodylus rhombifer) are reported from two underwater caves in the Dominican Republic by Morgan et al. (2018).[51]

New taxa

Aktiogavialis caribesi[52]

Sp. nov

Valid

Salas-Gismondi et al.

Late Miocene

Urumaco Formation{{Flag|Venezuela}}Anteophthalmosuchus epikrator[53]

Sp. nov

Valid

Ristevski et al.

Early CretaceousWessex Formation{{Flag|United Kingdom}}Caipirasuchus mineirus[54]

Sp. nov

Valid

Martinelli et al.

Late CretaceousAdamantina Formation{{Flag|Brazil}}

A sphagesaurid crocodyliform.

Dadagavialis[52]

Gen. et sp. nov

Valid

Salas-Gismondi et al.

Early Miocene

Cucaracha Formation{{Flag|Panama}}

A gryposuchine gavialoid. Genus includes new species D. gunai.

Kinesuchus[55]

Gen. et sp. nov

Valid

Filippi, Barrios & Garrido

Late Cretaceous (Santonian)

Bajo de la Carpa Formation{{Flag|Argentina}}

A peirosaurid crocodyliform. The type species is K. overoi.

Magyarosuchus[56]

Gen. et sp. nov

Valid

Ősi et al.

Early Jurassic (Toarcian)

Kisgerecse Marl Formation{{Flag|Hungary}}

A member of Metriorhynchoidea. The type species is M. fitosi.

Maledictosuchus nuyivijanan[57]

Sp. nov

Valid

Barrientos-Lara, Alvarado-Ortega & Fernández

Late Jurassic (Kimmeridgian)

Sabinal Formation{{Flag|Mexico}}Mandasuchus[58]

Gen. et sp. nov

Valid

Butler et al.

TriassicManda Formation{{Flag|Tanzania}}

An early member of Paracrocodylomorpha belonging to the group Loricata. The type species is M. tanyauchen.

Pagosvenator[59]

Gen. et sp. nov

Valid

Lacerda, de França & Schultz

Middle–Late Triassic

Dinodontosaurus Assemblage Zone of the Santa Maria Supersequence

{{Flag|Brazil}}

A member of the family Erpetosuchidae. Genus includes new species P. candelariensis.

Portugalosuchus[60]

Gen. et sp. nov

Valid

Mateus, Puértolas-Pascual & Callapez

Late Cretaceous (Cenomanian)

Tentugal Formation{{Flag|Portugal}}

A member of Eusuchia, possibly the oldest known member of Crocodilia. Genus includes new species P. azenhae.

Protocaiman[61]

Gen. et sp. nov

Valid

Bona et al.

Paleocene (Danian)

Salamanca Formation{{Flag|Argentina}}

A relative of caimans. Genus includes new species P. peligrensis.

Roxochampsa[62]

Gen. et comb. nov

Valid

Piacentini Pinheiro et al.

Late Cretaceous (late Campanian–early Maastrichtian)

Adamantina Formation
Presidente Prudente Formation{{Flag|Brazil}}

A crocodyliform belonging to the family Itasuchidae. The type species is "Goniopholis" paulistanus Roxo (1936).

Theriosuchus morrisonensis[63]

Sp. nov

Valid

Foster

Late JurassicMorrison Formation{{Flag|United States}}
({{Flag|Wyoming}})

A new species of the atoposaurid Theriosuchus and the first known from North America.

Wahasuchus[64]

Gen. et sp. nov

Valid

Saber et al.

Late Cretaceous (Campanian)

Quseir Formation{{Flag|Egypt}}

A member of Mesoeucrocodylia of uncertain phylogenetic placement, possibly a neosuchian. Genus includes new species W. egyptensis.

Name Novelty Status Authors Age Unit Location Notes Images
A goniopholidid.

Non-avian dinosaurs

Research

  • A study intending to identify the evolutionary processes that drove the diversification of dinosaur body mass is published by Benson et al. (2018).[65]
  • A study on the impact of geography on the evolutionary radiation of dinosaurs is published by O’Donovan, Meade & Venditti (2018), who note increasing amounts of sympatric speciation as terrestrial space became a limiting factor.[66]
  • A study on the impact of publication history on the estimates of dinosaur diversity patterns through time is published by Tennant, Chiarenza & Baron (2018).[67]
  • A study evaluating the possible influence of cuirassal ventilation and a herbivorous diet on the orientation of the pubis of dinosaurs is published by Macaluso & Tschopp (2018).[68]
  • A study on embryos of extant reptiles and birds, aiming to determine the developmental mechanism underlying the acquisition of the dinosaur-type perforated acetabulum, is published by Egawa et al. (2018).[69]
  • A study on the nesting style and incubation heat source in non-avian dinosaurs as indicated by comparison with extant crocodylians and megapode birds is published by Tanaka et al. (2018).[70]
  • A study on pigment traces in fossilized dinosaur eggshells is published by Wiemann, Yang & Norell (2018), who interpret their findings as indicating that eggshell coloration and pigment pattern originated in nonavian theropod dinosaurs.[71]
  • A study on the nutritional value of plants grown under elevated CO2 levels, evaluating the hypothesis that constraints on sauropod diet quality were driven by Mesozoic CO2 concentration, is published by Gill et al. (2018).[72]
  • Studies evaluating the link between the Carnian Pluvial Event and the explosive diversification of dinosaurs in the early Late Triassic are published by Bernardi et al. (2018)[73] and Benton, Bernardi & Kinsella (2018).[74]
  • A study comparing non-avian dinosaur faunas of Appalachia and Laramidia from the Aptian to Maastrichtian stages of the Cretaceous period is published by Brownstein (2018), who also evaluates dinosaur provincialism and ecology on Appalachia.[75]
  • A study on the bone histology of sauropod dinosaurs and birds, looking for histological correlates indicative of the presence of bird-like air sacs, is published by Lambertz, Bertozzo & Sander (2018).[76]
  • A study on the Middle Jurassic flora from Yorkshire (United Kingdom) as indicated by pollen and spores, and on the possible dinosaur-plant interactions in the area is published by Slater et al. (2018).[77]
  • Description and analysis of insect borings on hadrosaur bones from the late Campanian Cerro del Pueblo Formation (Mexico) is published by Serrano-Brañas, Espinosa-Chávez & Maccracken (2018).[78]
  • A study on the sedimentological and ichnological contexts of Early Jurassic dinosaur tracks and trackways from the Ha Nohana palaeosurface located within the upper Elliot Formation (Lesotho), and on the locomotor dynamics and behaviour of the trackmaker dinosaurs, is published by Rampersadh et al. (2018).[79]
  • New Middle Jurassic dinosaur tracksite, preserving sauropod and theropod tracks, is described from the Lealt Shale Formation (Skye, Scotland, United Kingdom) by dePolo et al. (2018).[80]
  • Large theropod (possibly carcharodontosaurid) and ornithopod (basal hadrosauroid) tracks are described from the Lower Cretaceous Sanbukdong Formation (South Korea) by Lee et al. (2018).[81]
  • A unique association of hadrosaur and therizinosaur tracks is reported from the Late Cretaceous lower Cantwell Formation (Alaska, United States) by Fiorillo et al. (2018).[82]
  • Large theropod and small sauropod tracks are described from the Lower Cretaceous Jingchuan Formation (China) by Lockley et al. (2018), who name a new ichnotaxon Ordexallopus zhanglifui.[83]
  • A study on the small to medium-sized tridactyl theropod tracks from the Upper Jurassic of the Jura Mountains (Switzerland), focusing on the possible variations in footprint shape along trackways, is published by Castanera et al. (2018).[84]
  • Theropod tracks (probably produced by Acrocanthosaurus) are described from the Cretaceous (Albian) De Queen Formation (Arkansas, United States) by Platt et al. (2018).[85]
  • First Cretaceous track morphotype attributable to the non-avian theropod ichnogenus Gigandipus is reported from the Lower Cretaceous Jiaguan Formation (Guizhou, China) by Xing et al. (2018), who name a new ichnospecies Gigandipus chiappei.[86]
  • New dinosaur ootaxon Duovallumoolithus shangdanensis is described on the basis of fossil eggs from the Upper Cretaceous Lijiacun Formation (China) by Zheng et al. (2018).[87]
  • A study on dendroolithid eggs from the Upper Cretaceous Tumiaoling Hill locality (Gaogou Formation; Yunxian, Hubei Province, China) is published by Zhang et al. (2018), who transfer the oospecies "Dendroolithus" tumiaolingensis Zhou, Ren, Xu & Guan (1998) to the genus Placoolithus.[88]
  • Evidence of cuticle preservation on theropod eggshells from the Nanxiong Group in China and the Two Medicine Formation in Montana, United States is presented by Yang et al. (2018).[89]
  • Description of a femur of a young diplodocoid sauropod from the Carnegie Quarry (Upper Jurassic Morrison Formation) at Dinosaur National Monument (United States), showing extensive bite marks on the bone, and a study on the identity and feeding technique of the tracemaker is published by Hone & Chure (2018).[90]
  • A skull of a chasmosaurine ceratopsian, preserving bite traces made by a tyrannosaurid theropod, is described from the Campanian Kirtland Formation (New Mexico, United States) by Dalman & Lucas (2018).[91]
  • A study on the function of denticle shape variation in the teeth of coelurosaurs of various body shapes and sizes is published by Torices et al. (2018).[92]
  • New data on feather anatomy in theropod dinosaurs Sinosauropteryx, Caudipteryx and Anchiornis is presented by Saitta, Gelernter & Vinther (2018).[93]
  • Theropod tracksite discovered in the Maastrichtian Nemegt Formation (Mongolia), preserving tracks of least four different trackmakers, and associated with a distorted foot skeleton of Gallimimus, is described by Lee et al. (2018).[94]
  • Didactyl theropod tracks with similarities to footprints attributed to small deinonychosaurian theropods are described from the Middle Jurassic (Aalenian-Bajocian) Dansirit Formation (Iran) by Xing, Abbassi & Lockley (2018).[95]
  • Parallel trackways indicating a group of small didactyl bipeds of inferred deinonychosaurian affinity are described from the Lower Cretaceous Dasheng Group (China) by Xing et al. (2018).[96]
  • Didactyl tracks attributed to juvenile or diminutive dromaeosaurs are described from the Lower Cretaceous (Aptian) Jinju Formation (South Korea) by Kim et al. (2018), who name a new ichnotaxon Dromaeosauriformipes rarus.[97]
  • Bishop et al. (2018) present predictive equations that may be used to model non-avian theropod locomotion, developed on the basis of a study of extant ground-running birds.[98]
  • A three-part series of papers investigating the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and evaluating its implications for inferring locomotor biomechanics in extinct non-avian theropods, is published by Bishop et al. (2018).[99][100][101]
  • A study on the resource partitioning among theropod dinosaurs known from the mid-Cretaceous assemblages from Niger (Gadoufaoua) and Morocco (Kem Kem Beds) as indicated by calcium isotope values from tooth enamel is published by Hassler et al. (2018).[102]
  • A study on the early evolution of the theropod hands and wrists, especially on the transition from five- to four-fingered hands, as indicated by the anatomy of the hands of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Barta, Nesbitt & Norell (2018).[103]
  • A study on the morphological changes that occurred during ontogeny in the postcranial skeleton of Coelophysis bauri and Megapnosaurus rhodesiensis is published by Griffin (2018).[104]
  • A study on the anatomy, phylogenetic relationships, paleobiology and biogeography of members of Ceratosauria is published by Delcourt (2018), who names a new clade Etrigansauria.[105]
  • A study on the pneumatization of a noasaurid vertebra recovered from the Upper Cretaceous Adamantina Formation (Brazil) is published by Brum et al. (2018).[106]
  • Two shed tooth crowns of an abelisaurid theropod are described from the Cenomanian Alcântara Formation by Sales, de Oliveira & Schultz (2018), representing the oldest abelisaurid occurrence from Brazil to date.[107]
  • Paulina-Carabajal & Filippi (2018) reconstruct the endocranial cavity enclosing the brain, cranial nerves, blood vessels and the labyrinth of the inner ear of the holotype specimen of Viavenator exxoni.[108]
  • Description of the osteology of Viavenator exxoni is published by Filippi et al. (2018).[109]
  • Fragmented theropod maxilla from the Upper Cretaceous Presidente Prudente Formation (Brazil), initially thought to be a carcharodontosaurid fossil, is interpreted as more likely to be an abelisaurid fossil by Delcourt & Grillo (2018).[110]
  • A vertebra of a large megalosaurid theropod, as well as large theropod footprints representing two morphotypes, are described from the Upper Jurassic (Kimmeridgian) of Asturias (Spain) by Rauhut et al. (2018).[111]
  • A study on the anatomy and histology of a partial spinosaurid tibia from the Lower Cretaceous Romualdo Formation (Brazil), possessing traits previously only observed in Spinosaurus aegyptiacus and correlated with semi-aquatic habits in many limbed vertebrates, is published by Aureliano et al. (2018).[112]
  • Spinosaurid fossils assigned to a form distinct from Baryonyx, Suchomimus and Sigilmassasaurus are described from the upper Barremian Arcillas de Morella Formation (Spain) by Malafaia et al. (2018).[113]
  • A nearly complete pedal ungual phalanx of an early juvenile specimen of Spinosaurus, representing the smallest known specimen assigned to this genus reported so far, is described from the Cretaceous Kem Kem Beds (Morocco) by Maganuco & Dal Sasso (2018).[114]
  • A study on the floating capabilities of Spinosaurus and other theropods is published by Henderson (2018), who argues that Spinosaurus was not highly specialized for a semi-aquatic mode of life.[115]
  • A study on the anatomy of the skull of Concavenator corcovatus is published by Cuesta et al. (2018).[116]
  • A study on the limb anatomy of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2018).[117]
  • A review of the fossil record of carcharodontosaurid theropods from the Cretaceous of North Africa, assessing its implications for understanding the distribution and ecological role of members of this group, is published by Candeiro et al. (2018).[118]
  • Description of theropod (including tyrannosauroid, ornithomimosaur and dromaeosaurid) specimens from the Ellisdale site of the Cretaceous Marshalltown Formation (New Jersey, United States) is published by Brownstein (2018).[119]
  • A study on the dietary and habitat preferences of theropod dinosaurs from the Upper Cretaceous Mussentuchit Member of the Cedar Mountain Formation of Utah is published by Frederickson, Engel & Cifelli (2018).[120]
  • Theropod fossils from the Lower Cretaceous (Albian) Santana Formation (Brazil), initially thought to be oviraptorosaur fossils, are reinterpreted as fossils of a member of Megaraptora by Aranciaga Rolando et al. (2018).[121]
  • A study on the phylogenetic relationships of Timimus hermani and Santanaraptor placidus is published by Delcourt & Grillo (2018), who interpret these taxa as tyrannosauroid theropods, and name new clades Pantyrannosauria and Eutyrannosauria.[122]
  • A metatarsal bone of an indeterminate tyrannosauroid theropod, indicative of an animal in the size range of tyrannosauroids from the Santonian to Maastrichtian, is described from the Cenomanian Potomac Formation of New Jersey by Brownstein (2018), representing the only definite occurrence of a tyrannosauroid in Appalachia (eastern North America) before the Coniacian and Santonian.[123]
  • Three foot bones of large tyrannosauroid theropods, interpreted as fossils of non-tyrannosaurid tyrannosauroids, are described from the Maastrichtian Navesink Formation (New Jersey, United States) by Brownstein (2018).[124]
  • Partial tibia of a tyrannosauroid theropod, possibly a relative of Bistahieversor sealeyi, is described from the Upper Cretaceous (Maastrichtian) Navesink Formation (New Jersey, United States) by Brownstein (2018).[125]
  • A metatarsal bone of a young tyrannosaurid theropod, marked with several long grooves interpreted as tooth traces of a large tyrannosaurid, is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States) by McLain et al. (2018).[126]
  • A study on the jaw musculature of Tyrannosaurus rex, and its importance for reconstructions of the bite force of this species, is published by Bates & Falkingham (2018).[127]
  • A study on the ornithomimosaur fossils from the Lower Cretaceous Arundel Clay (Maryland, United States) published by Brownstein (2017), interpreting the fossils as indicative of the presence of two ornithomimosaur taxa in the Arundel,[128] is criticized by McFeeters, Ryan & Cullen (2018).[129][130][131]
  • A study on the diversity of ornithomimosaur dinosaurs from the Upper Cretaceous Nemegt Formation (Mongolia) as indicated by the morphology of their manus bones is published by Chinzorig et al. (2018).[132]
  • A study on the putative beta-keratin antibodies reported in a fossil specimen of Shuvuuia deserti by Schweitzer et al. (1999)[133] is published by Saitta et al. (2018), who interpret their findings as inconsistent with any protein or other original organic substance preservation in the Shuvuuia fiber.[134]
  • Probable therizinosauroid eggs are described from the Upper Cretaceous Hongtuya Formation (China) by Ren et al. (2018).[135]
  • A study on the anatomy of the basicranium of Nothronychus mckinleyi, and its implications for reconstructing the soft tissues of this species, is published by Smith, Sanders & Wolfe (2018).[136]
  • A study on egg clutches produced by oviraptorosaur theropods representing a large body size range, evaluating their implications for inferring how oviraptorosaurs of different body size incubated their eggs, is published by Tanaka et al. (2018).[137]
  • A study evaluating the potential of the wings of Caudipteryx to produce small aerodynamic forces during terrestrial locomotion is published by Talori et al. (2018).[138]
  • A study on the morphology of the dentary of a member of the genus Caenagnathasia from the Upper Cretaceous (Turonian) Bissekty Formation (Uzbekistan) is published by Wang, Zhang & Yang (2018).[139]
  • A small caenagnathid tibia is described from the Upper Cretaceous (Maastrichtian) Horseshoe Canyon Formation (Alberta, Canada) by Funston & Currie (2018).[140]
  • New specimen of Citipati osmolskae preserved in a brooding position atop a nest of eggs is described from Ukhaa Tolgod (Mongolia) by Norell et al. (2018).[141]
  • Description of endocasts of Citipati osmolskae and Khaan mckennai, and a study on their implications for inferring the course of oviraptorosaur brain evolution and how it relates to the origin of the modern bird brain, is published by Balanoff et al. (2018).[142]
  • Redescription of Hulsanpes perlei and a study on the phylogenetic relationships of this species is published by Cau & Madzia (2018).[143]
  • Description of the anatomy of the postcranial skeleton of a newly discovered specimen of Buitreraptor gonzalezorum is published by Novas et al. (2018).[144]
  • A study on the tail anatomy of Buitreraptor gonzalezorum is published by Motta, Brissón Egli & Novas (2018).[145]
  • Description of the anatomy of the postcranial skeleton of Buitreraptor gonzalezorum based on the holotype and referred specimens is published by Gianechini et al. (2018).[146]
  • A tooth of a large dromaeosaurid theropod, intermediate in size between those of smaller dromaeosaurids like Saurornitholestes and gigantic forms like Dakotaraptor, is described from the middle Campanian Tar Heel Formation (North Carolina, United States) by Brownstein (2018).[147]
  • New specimen of Sinovenator changii, including a nearly complete skull and providing new information on the anatomy of the skull of this species, is described from the Lower Cretaceous Yixian Formation (China) by Yin, Pei & Zhou (2018).[148]
  • A study on the incubation period and incubation strategy of Troodon formosus is published by Varricchio, Kundrát & Hogan (2018).[149]
  • Description of two new specimens of Anchiornis huxleyi and a study on the phylogenetic relationships of the species is published by Guo, Xu & Jia (2018).[150]
  • Apparent gastric pellets of Anchiornis are described by Zheng et al. (2018).[151]
  • A study on the evolution of the anatomy of the braincase of sauropodomorph dinosaurs is published by Bronzati, Benson & Rauhut (2018).[152]
  • Otero (2018) presents the inferred shoulder and forelimb musculature of sauropodomorph dinosaurs, as inferred by comparisons with living crocodiles and birds.[153]
  • A study evaluating how hindlimb musculature of sauropodomorph dinosaurs was affected by the development of a quadrupedal stance from a bipedal one, and later in the transition from a narrow‐gauge to a wide‐gauge stance, is published by Klinkhamer et al. (2018).[154]
  • New specimen of Buriolestes schultzi, providing additional information on the anatomy of this species, is described from the Upper Triassic Santa Maria Formation (Brazil) by Müller et al. (2018).[155]
  • Fossil of a basal sauropodomorph dinosaur (more similar to Norian forms such as Pantydraco caducus and Unaysaurus tolentinoi than to Carnian taxa such as Saturnalia tupiniquim and Pampadromaeus barberenai) found in the Triassic locality in Brazil which also yielded the fossils of Sacisaurus agudoensis are described by Marsola et al. (2018).[156]
  • Redescription of the anatomy of the braincase of Efraasia minor is published by Bronzati & Rauhut (2018).[157]
  • A study on the anatomy and phylogenetic relationships of Sarahsaurus aurifontanalis is published by Marsh & Rowe (2018).[158]
  • A study on the anatomy of the skull of Massospondylus carinatus is published by Chapelle & Choiniere (2018).[159]
  • Xing et al. (2018) describe a bone abnormality in a rib of a specimen of Lufengosaurus huenei from the Lower Jurassic Fengjiahe Formation (China), possibly caused by a failed predator attack.[160]
  • A study on the osteology of the sauropodomorph Pulanesaura eocollum is published by Mcphee & Choiniere (2018).[161]
  • A study on the microstructure of the long bones of Antetonitrus ingenipes is published by Krupandan, Chinsamy-Turan & Pol (2018).[162]
  • A study on the geological age of the type locality of Vulcanodon karibaensis is published by Viglietti et al. (2018), who interpret Vulcanodon as likely to be Sinemurian–Pliensbachian in age, and potentially ∼10–15 million years older than previously thought. This makes it the oldest known sauropod.[163]
  • Two neck vertebrae of a eusauropod sauropod dinosaur are described from a new Early Jurassic locality in the Haute Moulouya Basin (Morocco) by Nicholl, Mannion & Barrett (2018), representing some of the earliest eusauropod fossils reported so far.[164]
  • A study on the phylogenetic relationships of basal members of Eusauropoda from the Early-Middle Jurasic of Patagonia, Argentina is published by Holwerda & Pol (2018).[165]
  • A study on the age of the Lower Shaximiao Formation of the Sichuan Basin, southwest China (preserving abundant sauropod fossils, including the Shunosaurus-Omeisaurus fauna) is published by Wang et al. (2018).[166]
  • A study on the skull anatomy of Bellusaurus sui is published by Moore et al. (2018).[167]
  • Description of a skull of a juvenile sauropod belonging or related to the genus Diplodocus from the Upper Jurassic Morrison Formation (Montana, United States), representing the smallest diplodocid skull reported so far, and a study on the implications of this finding for inferring the ontogeny of the skull of diplodocids, is published by Woodruff et al. (2018).[168]
  • Exquisitely preserved new skull of a diplodocid sauropod is described from the Upper Jurassic Morrison Formation (Wyoming, United States) by Tschopp, Mateus & Norell (2018), providing new information on the morphology of diplodocid skulls, and indicating presence of overlapping joints between the maxilla, jugal, quadratojugal and the lacrimal, permitting limited anterior sliding movement of the snout.[169]
  • Xenoposeidon proneneukos is assigned to the family Rebbachisauridae by Taylor (2018).[170]
  • Partial sauropod (probably brachiosaurid) pes is described from the Upper Jurassic Morrison Formation in the Black Hills in Wyoming (United States) by Maltese et al. (2018), representing the largest sauropod pes described to date.[171]
  • A sauropod footprint assigned to the ichnogenus Brontopodus, produced by a trackmaker of the size exceeding that of any Mongolian dinosaur reported so far from skeletal material, is described from the Upper Cretaceous Nemegt Formation (Mongolia) by Stettner, Persons & Currie (2018).[172]
  • A study on sauropod tracks from the Cal Orck’o tracksite in the Maastrichtian El Molino Formation (Bolivia) is published by Meyer, Marty & Belvedere (2018), who name a new ichnotaxon Calorckosauripus lazari, interpreted by the authors as tracks produced by a basal titanosaur.[173]
  • A study on the bone histology of Rapetosaurus krausei is published by Curry Rogers & Kulik (2018).[174]
  • New titanosaur fossil material is described from the Upper Cretaceous Río Huaco Formation and Los Llanos Formation (La Rioja Province, Argentina) by Hechenleitner et al. (2018).[175]
  • A study on the mechanical strength of the unusually thick shells of the titanosaur eggs from the Sanagasta nesting site (La Rioja, Argentina), evaluating the required force to break them from inside, is published by Hechenleitner et al. (2018), who interpret their findings as indicating that thinning of outer eggshells was necessary for successful hatchings.[176]
  • Description of new fossil material of Atsinganosaurus velauciensis from the Upper Cretaceous Argiles et Grès à Reptiles Formation (France) and a study on the phylogenetic relationships of this species is published by Díez Díaz et al. (2018).[177]
  • A redescription of Mendozasaurus neguyelap based on previously undocumented remains and a study on the phylogenetic relationships of the species is published by Gonzàlez Riga et al. (2018).[178]
  • Postcranial remains attributable to the holotype specimen of Nemegtosaurus mongoliensis are described from the Upper Cretaceous Nemegt Formation (Mongolia) by Currie et al. (2018), who consider Opisthocoelicaudia skarzynskii to be a probable junior synonym of N. mongoliensis.[179]
  • A study on the morphology of sauropod teeth from the Cenomanian of Morocco and Algeria, comparing them to contemporaneous Cretaceous sauropod tooth morphotypes (including sauropod teeth from Africa and southern Europe), is published by Holwerda et al. (2018).[180]
  • A study on the heterodontosaurid fossils from the Early Jurassic of Argentina described by Becerra et al. (2016),[181] aiming to estimate the body size of the animal, is published by Becerra & Ramírez (2018).[182]
  • A study on the teeth of Manidens condorensis, based on new material indicative of a strong heterodonty and a novel occlusion type previously unreported in herbivorous dinosaurs, is published by Becerra et al. (2018).[183]
  • Redescription of Gigantspinosaurus sichuanensis and a study on the phylogenetic relationships of the species is published by Hao et al. (2018).[184]
  • New specimen of Hesperosaurus mjosi, providing new information on the anatomy of the species and indicating that H. mjosi might have been a smaller species than Stegosaurus stenops, is described from the Upper Jurassic Morrison Formation (Montana, United States) by Maidment, Woodruff & Horner (2018).[185]
  • Redescription of the fossil material referred to Paranthodon africanus and a study on the phylogenetic relationships of this species is published by Raven & Maidment (2018).[186]
  • Probable ankylosaurian footprints are described from the Upper Jurassic Guará Formation (Brazil) by Francischini et al. (2018).[187]
  • Probable ankylosaurian footprints assigned to the ichnogenus Tetrapodosaurus are described from the Middle Jurassic (Bajocian) Zorrillo-Taberna Indiferenciadas Formation (Mexico) by Rodríguez-de la Rosa et al. (2018), representing the oldest ankylosaurian ichnofossils reported so far.[188]
  • A study aiming to test the hypothesis that convoluted nasal passages of ankylosaurs were efficient heat exchangers is published by Bourke, Porter & Witmer (2018).[189]
  • A study on the neuroanatomy of ankylosaurid dinosaurs based on skull endocasts of Talarurus plicatospineus and Tarchia teresae is published by Paulina-Carabajal et al. (2018).[190]
  • A survey of ankylosaur occurrences in the Cretaceous deposits of Alberta (Canada) and a study looking for explanation of numerous instances of ankylosaur specimens preserved overturned is published by Mallon et al. (2018).[191]
  • A study on the teeth histology and development in Changchunsaurus parvus is published by Chen et al. (2018).[192]
  • Parksosaurid tooth and vertebral centrum is described from the Campanian of the Cerro del Pueblo Formation by Rivera-Sylva et al. (2018), representing the first record of this family from Mexico.[193]
  • A study on the bone microstructure and ontogeny of basal ornithopod specimens from the Early Cretaceous of Australia is published by Woodward, Rich & Vickers-Rich (2018), who reinterpret the tracks as produced in non-marine environment.[194]
  • A toe bone of an ornithopod dinosaur is described from the Albian Hudspeth Formation (Oregon, United States) by Retallack et al. (2018), representing the first diagnostic nonavian dinosaur fossil from Oregon.[195]
  • A study on the ontogenetic changes in the postcranial skeleton of Dysalotosaurus lettowvorbecki is published by Hübner (2018).[196]
  • A study on the holotype specimen of Riabininohadros weberae, revealing previously unknown elements of the femur, astragalus and calcaneus, is published by Lopatin, Averianov & Alifanov (2018), who also report the second dinosaur specimen from the Maastrichtian of Crimea, a fragmentary skeleton of an advanced iguanodontid or primitive hadrosauroid ornithopod.[197]
  • A redescription of Iguanodon galvensis and a study on the phylogenetic relationships of the species is published by Verdú et al. (2018).[198]
  • Microfossil remains of Early Cretaceous grasses extracted from a specimen of Equijubus normani are described by Wu, You & Li (2018).[199]
  • A study on the phylogenetic relationships of Nipponosaurus sachalinensis is published by Takasaki et al. (2018).[200]
  • A study on the osteology, histology and taxonomy of the Maastrichtian hadrosauroid specimens from the Basturs Poble bonebed (Spain) is published by Fondevilla et al. (2018).[201]
  • A study on the anatomy of the perinatal specimens of Maiasaura peeblesorum from the Campanian Two Medicine Formation (Montana, United States), and on their implications for understanding of the morphological changes in the skeletons of members of this species that took place in their early growth stages, is published by Prieto-Marquez & Guenther (2018).[202]
  • Description of the morphology of the braincase of Secernosaurus koerneri is published by Becerra et al. (2018).[203]
  • A hadrosaurid nestling belonging to the genus Edmontosaurus is described from the Upper Cretaceous (Maastrichtian) Hell Creek Formation (Montana), United States) by Wosik, Goodwin & Evans (2018), who interpret its anatomy as indicating that it was capable of fully quadrupedal locomotion.[204]
  • Partial sacrum of a hadrosaurid dinosaur is described from the Campanian Cape Sebastian Sandstone (Oregon, United States) by Taylor & Lucas (2018).[205]
  • A study on the differences in shape and structural performance of the lower jaws of ceratopsians is published by Maiorino et al. (2018).[206]
  • A study evaluating whether skull ornaments of ceratopsians might have helped members of closely related sympatric species differentiate themselves is published by Knapp et al. (2018).[207]
  • A description of the anatomy of the postcranial skeleton of Yinlong downsi and a study on the phylogenetic relationships of basal ornithischians is published by Han et al. (2018).[208]
  • A study on the morphology of the joint of the occipital skull region and the first two cervical vertebrae of Psittacosaurus sibiricus is published by Podlesnov (2018).[209]
  • A study on the dental morphology and tooth replacement in Liaoceratops yanzigouensis is published by He et al. (2018).[210]
  • A study on the ontogenetic changes of the bone microstructure in Protoceratops andrewsi and their implications for the biology of this species is published by Fostowicz-Frelik & Słowiak (2018).[211]
  • A study on the differences of shape of cervical vertebrae of different specimens of Protoceratops andrewsi is published by Tereschenko (2018).[212]
  • Two isolated ceratopsid horncores are described from the Upper Cretaceous (Campanian, ∼78.5 million years ago) Foremost Formation (Alberta, Canada) by Brown (2018), representing some of the earliest ceratopsid fossils reported so far.[213]
  • Description of new fossil material of Medusaceratops lokii from the Upper Cretaceous Campanian (Judith River Formation (Montana, United States) and a study on the phylogenetic relationships of the species is published by Chiba et al. (2018).[214]
  • Small marks interpreted as feeding traces are described from a partial frill of a juvenile specimen of Centrosaurus apertus from the Dinosaur Park Formation (Alberta, Canada) by Hone, Tanke & Brown (2018).[215]
  • Description of three partial chasmosaurine skulls collected from the Dinosaur Park Formation, and age-equivalent sediments of the uppermost Oldman Formation, of southern Alberta (Canada) is published by Campbell et al. (2018).[216]
  • A study on the ecological diversity of Cretaceous herbivorous dinosaurs leading up to the Cretaceous–Paleogene extinction event, as indicated by jaw and teeth morphology, is published by Nordén et al. (2018).[217]

New taxa

Acantholipan[218]

Gen. et sp. nov

Valid

Rivera-Sylva et al.

Late Cretaceous (Santonian)

Pen Formation{{Flag|Mexico}}

A member of the family Nodosauridae. Genus includes new species A. gonzalezi.

Akainacephalus[219]

Gen. et sp. nov

Valid

Wiersma & Irmis

Late Cretaceous (late Campanian)

Kaiparowits Formation{{Flag|United States}}
({{Flag|Utah}})

A member of the family Ankylosauridae. The type species is A. johnsoni.

Anodontosaurus inceptus[220]

Sp. nov

Valid

Penkalski

Late CretaceousDinosaur Park Formation{{Flag|Canada}}
({{Flag|Alberta}})

A member of the family Ankylosauridae.

Anomalipes[221]

Gen. et sp. nov

Valid

Yu et al.

Late CretaceousWangshi Group{{Flag|China}}

A caenagnathid theropod. The type species is A. zhaoi.

Arkansaurus[222]

Gen. et sp. nov

Valid

Hunt & Quinn

Early Cretaceous (Albian–Aptian)

Trinity Group{{Flag|United States}}
({{Flag|Arkansas}})

An ornithomimosaur theropod. Genus includes new species A. fridayi.

Avimimus nemegtensis[223]

Sp. nov

Valid

Funston et al.

Late CretaceousNemegt Formation{{Flag|Mongolia}}Baalsaurus[224]

Gen. et sp. nov

Valid

Calvo & Riga

Late Cretaceous (Turonian-Coniacian)

Portezuelo Formation{{Flag|Argentina}}

A titanosaur sauropod. The type species is B. mansillai.

Bagualosaurus[225]

Gen. et sp. nov

Valid

Pretto, Langer & Schultz

Late TriassicSanta Maria Formation{{Flag|Brazil}}

An early member of Sauropodomorpha. Genus includes new species B. agudoensis.

Bannykus[226]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Aptian)

Bayin-Gobi Formation{{Flag|China}}

An alvarezsaurian theropod. The type species is B. wulatensis.

Bayannurosaurus[227]

Gen. et sp. nov

Valid

Xu et al.Early CretaceousBayin-Gobi Formation{{Flag|China}}

A non-hadrosauriform ankylopollexian ornithopod. Genus includes new species B. perfectus.

Caihong[228]

Gen. et sp. nov

Valid

Hu et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation{{Flag|China}}

A paravian theropod. The type species is C. juji.

Choconsaurus[229]

Gen. et sp. nov

Valid

Simón, Salgado & Calvo

Late Cretaceous (Cenomanian)

Huincul Formation{{Flag|Argentina}}

A titanosaur sauropod. The type species is C. baileywillisi.

Choyrodon[230]

Gen. et sp. nov

Valid

Gates et al.

Early Cretaceous (Albian)

Khuren Dukh Formation{{Flag|Mongolia}}

An iguanodontian ornithopod. The type species is C. barsboldi.

Crittendenceratops[231]

Gen. et sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian)

Fort Crittenden Formation{{Flag|United States}}
({{Flag|Arizona}})

A centrosaurine ceratopsid dinosaur belonging to the tribe Nasutoceratopsini. The type species is C. krzyzanowskii.

Diluvicursor[232]

Gen. et sp. nov

Valid

Herne et al.

Early Cretaceous (Albian)

Eumeralla Formation{{Flag|Australia}}

A small-bodied ornithopod. The type species is D. pickeringi.

Dryosaurus elderae[233]

Sp. nov

Valid

Carpenter & GaltonLate JurassicMorrison Formation{{Flag|United States}}
({{Flag|Utah}})Dynamoterror[234]

Gen. et sp. nov

Valid

McDonald, Wolfe & Dooley

Late Cretaceous (early Campanian)

Menefee Formation{{Flag|United States}}
({{Flag|New Mexico}})

A tyrannosaurid theropod. The type species D. dynastes.

Ingentia[235]

Gen. et sp. nov

Valid

Apaldetti et al.

Late Triassic (late Norian–Rhaetian)

Quebrada del Barro Formation{{Flag|Argentina}}

An early member of Sauropodomorpha related to Lessemsaurus. Genus includes new species I. prima.

Invictarx[236]

Gen. et sp. nov

Valid

McDonald & Wolfe

Late Cretaceous (early Campanian)

Menefee Formation{{Flag|United States}}
({{Flag|New Mexico}})

A member of the family Nodosauridae. The type species is I. zephyri.

Jinyunpelta[237]

Gen. et sp. nov

Zheng et al.

Cretaceous (Albian–Cenomanian)

Liangtoutang Formation{{Flag|China}}

A member of the family Ankylosauridae belonging to the subfamily Ankylosaurinae. The type species is J. sinensis.

Lavocatisaurus[238]

Gen. et sp. nov

Valid

Canudo et al.

Early Cretaceous (Aptian–early Albian)

Rayoso Formation{{Flag|Argentina}}

A rebbachisaurid sauropod. The type species is L. agrioensis.

Ledumahadi[239]

Gen. et sp. nov

Valid

McPhee et al.

Early Jurassic (Hettangian-Sinemurian)

Elliot Formation{{Flag|South Africa}}

An early member of Sauropodiformes. The type species is L. mafube.

Liaoningotitan[240]

Gen. et sp. nov

Valid

Zhou et al.

Early CretaceousYixian Formation{{Flag|China}}

A titanosauriform sauropod. The type species is L. sinensis.

Lingwulong[241]

Gen. et sp. nov

Valid

Xu et al.

Late Early to early Middle Jurassic (late Toarcian–Bajocian)

Yanan Formation{{Flag|China}}

A dicraeosaurid sauropod. The type species is L. shenqi.

Macrocollum[242]

Gen. et sp. nov

Valid

Müller, Langer & Dias-da-Silva

Late Triassic (early Norian)

Caturrita Formation{{Flag|Brazil}}

An early member of Sauropodomorpha related to Unaysaurus. Genus includes new species M. itaquii.

Mansourasaurus[243]

Gen. et sp. nov

Valid

Sallam et al.

Late Cretaceous (Campanian)

Quseir Formation{{Flag|Egypt}}

A titanosaur sauropod. The type species is M. shahinae.

Maraapunisaurus[244]

Gen. et comb. nov

Valid

Carpenter

Late Jurassic (Kimmeridgian—Tithonian)

Morrison Formation{{Flag|United States}}
{{Flag|Colorado}}

A rebbachisaurid sauropod; a new genus for "Amphicoelias" fragillimus Cope (1878f).

Mongolostegus[245]

Gen. et sp. nov

Valid

Tumanova & Alifanov

Early Cretaceous (Aptian–Albian)

Dzunbain Formation{{Flag|Mongolia}}

A member of Stegosauria. Genus includes new species M. exspectabilis.

Platypelta[220]

Gen. et sp. nov

Valid

Penkalski

Late CretaceousDinosaur Park Formation{{Flag|Canada}}
({{Flag|Alberta}})

A member of the family Ankylosauridae. Genus includes new species P. coombsi.

Qiupanykus[246]

Gen. et sp. nov

Valid

et al.

Late Cretaceous (Maastrichtian)

Qiupa Formation{{Flag|China}}

An alvarezsaurid theropod. The type species is Q. zhangi.

Saltriovenator[247]

Gen. et sp. nov

Valid

Dal Sasso et al.

Early Jurassic (Sinemurian)

Saltrio Formation{{Flag|Italy}}

A ceratosaurian theropod. The type species is S. zanellai.

Scolosaurus thronus[220]

Sp. nov

Valid

Penkalski

Late CretaceousDinosaur Park Formation{{Flag|Canada}}
({{Flag|Alberta}})

A member of the family Ankylosauridae.

Sibirotitan[248]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous (probably Barremian)

Ilek Formation{{Flag|Russia}}

A non-titanosaurian somphospondyl sauropod. Genus includes new species S. astrosacralis.

Tratayenia[249]

Gen. et sp. nov

Valid

Porfiri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation{{Flag|Argentina}}

A megaraptoran theropod. Genus includes new species T. rosalesi.

Volgatitan[250]

Gen. et sp. nov

Valid

Averianov & Efimov

Early Cretaceous (Hauterivian)

{{Flag|Russia}}
({{Flag|Ulyanovsk Oblast}})

A titanosaur sauropod related to members of the group Lognkosauria. The type species is V. simbirskiensis.

Weewarrasaurus[251]

Gen. et sp. nov

Valid

Bell et al.

Late Cretaceous (Cenomanian)

Griman Creek Formation{{Flag|Australia}}

A small-bodied non-iguanodontian ornithopod. The type species is W. pobeni.

Xiyunykus[226]

Gen. et sp. nov

Valid

Xu et al.

Early Cretaceous (Barremian-Aptian?)

Tugulu Group{{Flag|China}}

An alvarezsaurian theropod. The type species is X. pengi.

Yizhousaurus[252]

Gen. et sp. nov

Zhang et al.

Early JurassicLufeng Formation{{Flag|China}}

An early member of Sauropodiformes. The type species is Y. sunae.

Name Novelty Status Authors Age Unit Location Notes Images
An oviraptorosaurian.

Birds

Research

  • Dinosaur-like ossification pattern of skull bones (formation of the ossification centres of the prefrontal and postorbital) is reported in bird embryos by Smith-Paredes et al. (2018).[253]
  • A study evaluating whether eggs of early birds from the Mesozoic could have borne the weight of incubating adults is published by Deeming & Mayr (2018).[254]
  • A study on the formation of the pygostyle in extant birds and its evolution in Mesozoic birds is published by Rashid et al. (2018), who interpret their findings as indicating that the lack of pygostyle in Zhongornis haoae and other juvenile Mesozoic birds does not necessarily indicate that they are intermediate species in the long- to short-tailed evolutionary transition, and that feathered coelurosaur tail preserved in Burmese amber which was described by Xing et al. (2016)[255] might be avian.[256]
  • A study on the anatomy of the braincase of birds and non-avian dinosaurs, evaluating whether there is a link between changes in brain anatomy and loss of flight, is published by Gold & Watanabe (2018).[257]
  • A study on the preservation potential of feather keratin in the fossil record is published by Schweitzer et al. (2018).[258]
  • Description of 31 samples of Cretaceous amber from Myanmar that contain feathers, providing new information on the morphology and variability of rachis-dominated feathers of Cretaceous birds, is published by Xing et al. (2018).[259]
  • A pseudoscorpion attached to barbules of a contour feather, possibly documenting a phoretic association between pseudoscorpions and Mesozoic birds, is described from the Cretaceous amber from Myanmar by Xing, McKellar & Gao (2018).[260]
  • A redescription of the bird trackway originally labeled Aquatilavipes anhuiensis from the Lower Cretaceous Qiuzhuang Formation (Anhui, China) is published by Xing et al. (2018), who transfer this ichnospecies to the ichnogenus Koreanaornis.[261]
  • New avian ichnospecies Ignotornis canadensis is described from the Lower Cretaceous (Albian) Gates Formation (Canada) by Buckley, McCrea & Xing (2018).[262]
  • Ignotornid tracks are described from the Lower Cretaceous of Jiangsu (China) by Xing et al. (2018), representing the first known record of the ichnogenus Goseongornipes from China.[263]
  • The twelfth specimen of Archaeopteryx, the oldest reported so far, is described by Rauhut, Foth & Tischlinger (2018).[264]
  • A study on the geometric properties of the wing bones of Archaeopteryx is published by Voeten et al. (2018), who interpret their findings as indicating that Archaeopteryx was able to actively use its wings to take to the air (using a different flight stroke than used by extant birds).[265]
  • Gastrolith masses preserved in five specimens of Jeholornis will be described by O'Connor et al. (2018).[266]
  • A new confuciusornithid specimen, most similar to Eoconfuciusornis zhengi but also sharing traits with Confuciusornis, will be described from the Upper Cretaceous Huajiying Formation (China) by Navalón et al. (2018).[267]
  • A study on the morphology of the skull of Confuciusornis sanctus is published by Elżanowski, Peters & Mayr (2018).[268]
  • An exceptionally-preserved specimen of Confuciusornis, preserving elaborate plumage patterning, is described from the Lower Cretaceous deposits in Fengning County (Hebei Province, China) estimated to be equivalent with the Dawangzhangzi Member of the Yixian Formation by Li et al. (2018).[269]
  • An articulated skeleton of an enantiornithine bird preserved in the Cretaceous amber from Myanmar is described by Xing et al. (2018).[270]
  • An early juvenile enantiornithine specimen, providing new information on the osteogenesis in members of Enantiornithes, is described from the Lower Cretaceous Las Hoyas deposits of Spain by Knoll et al. (2018).[271]
  • A study evaluating the capacity of the enantiornithines Concornis lacustris and Eoalulavis hoyasi to use intermittent flight (alternating flapping and gliding phases) is published by Serrano et al. (2018).[272]
  • A study on the morphology and diversity of enantiornithine coracoids from the Upper Cretaceous Bissekty Formation (Dzharakuduk locality, Uzbekistan) is published by Panteleev (2018).[273]
  • O’Connor et al. (2018) propose criteria for identifying medullary bone in fossils, and report probable medullary bone from a pengornithid enantiornithine specimen from the Lower Cretaceous Jiufotang Formation (China).[274]
  • A specimen of Archaeorhynchus spathula with extensive soft tissue preservation, revealing a tail morphology previously unknown in Mesozoic birds and an exceptional occurrence of fossilized lung tissue, is described from the Lower Cretaceous Jiufotang Formation (China) by Wang et al. (2018).[275]
  • Wang et al. (2018) report the presence of distinct salt gland fossa on the frontal of a bird similar to Iteravis huchzermeyeri and Gansus zheni from the Lower Cretaceous Sihedang locality (Jiufotang Formation, China); the authors also consider I. huchzermeyeri and G. zheni to be probably synonymous.[276]
  • Abundant black flies, thought to have inhabited the same environments as Cretaceous ornithurine birds and most likely fed on them, are described from the Santonian Taimyr amber (Russia) by Perkovsky, Sukhomlin & Zelenkov (2018), who use these insects as an indicator of a bird community, and argue that advanced ornithuromorph birds might have originated at higher latitudes.[277]
  • Field et al. (2018) report new specimens and previously overlooked elements of the holotype of Ichthyornis dispar, and generate a nearly complete three-dimensional reconstruction of the skull of this species.[278]
  • A study on the impact of the widespread destruction of forests during the Cretaceous–Paleogene extinction event on bird evolution, as indicated by ancestral state reconstructions of neornithine ecology and inferences about enantiornithine ecology, is published by Field et al. (2018), who interpret their findings as indicating that the global forest collapse at the end of the Cretaceous caused extinction of predominantly tree-dwelling birds, while bird groups that survived the extinction and gave rise to extant birds were non-arboreal.[279]
  • A study on the evolution of the anatomy of the crown-bird skull is published by Felice & Goswami (2018), who also present a hypothetical reconstruction of the ancestral crown-bird skull.[280]
  • A study on the dietary behavior of four species of the moa and their interactions with parasites based on data from their coprolites is published by Boast et al. (2018).[281]
  • A study on the seeds preserved in moa coprolites is published by Carpenter et al. (2018), who question the hypothesis that some of the largest-seeded plants of New Zealand were dispersed by moas.[282]
  • A study on the genetic and morphological diversity of the emus, including extinct island populations, is published by Thomson et al. (2018).[283]
  • A study on the timing of first human arrival in Madagascar, as indicated by evidence of prehistoric human modification of multiple elephant bird postcranial elements, is published by Hansford et al. (2018).[284]
  • A study on the anatomy of the brains of elephant birds Aepyornis maximus and A. hildebrandti, and on its implications for inferring the ecology and behaviour of these birds, is published by Torres & Clarke (2018).[285]
  • A model of development of bony pseudoteeth of the odontopterygiform birds is proposed by Louchart et al. (2018).[286]
  • A study on the phylogenetic relationships of the taxa assigned to the family Vegaviidae by Agnolín et al. (2017)[287] is published by Mayr et al. (2018).[288]
  • A study on the adaptations for filter-feeding (other than beak shape) in the feeding apparatus of modern ducks, evaluating whether they could be also found in the skull of Presbyornis, is published by Zelenkov & Stidham (2018), who argue that Presbyornis most likely was a poorly specialized filter-feeder.[289]
  • A study on the phylogenetic relationships of the species Chendytes lawi and the Labrador duck (Camptorhynchus labradorius) is published by Buckner et al. (2018).[290]
  • Schmidt (2018) interprets more than 1000 large, near-circular gravel mounds from western New South Wales (Australia) as likely to be nest mounds constructed by an extinct bird, similar to the malleefowl but larger.[291]
  • A study on the phylogenetic relationships of Foro panarium is published by Field & Hsiang (2018), who consider this species to be a stem-turaco.[292]
  • Petralca austriaca, originally thought to be an auk, is reinterpreted as a member of Gaviiformes by Göhlich & Mayr (2018).[293]
  • Redescription of the anatomy of the fossil penguin Madrynornis mirandus and a study on the phylogenetic relationships of this species is published by Degrange, Ksepka & Tambussi (2018).[294]
  • Fossil material attributed to the extinct Hunter Island penguin (Tasidyptes hunteri) is reinterpreted as assemblage of remains from three extant penguin species by Cole et al. (2018).[295]
  • A study on the history of penguin colonization of the Vestfold Hills (Antarctica), indicating that penguins started colonizing the northern Vestfold Hills around 14.6 thousand years before present, is published by Gao et al. (2018).[296]
  • A study on the history of active and abandoned Adélie penguin colonies at Cape Adare (Antarctica), based on new excavations and radiocarbon dating, is published by Emslie, McKenzie & Patterson (2018).[297]
  • A study on the mummified Adélie penguin carcasses and associated sediments from the Long Peninsula (East Antarctica), and on their implications for inferring the causes of the abandonment of numerous penguin sub‐colonies in this area during the 2nd millennium, is published by Gao et al. (2018).[298]
  • New bird fossils, including the first reported tarsometatarsus of the plotopterid Tonsala hildegardae are described from the late Eocene/early Oligocene Makah Formation and the Oligocene Pysht Formation (Washington State, United States) by Mayr & Goedert (2018), who name a new plotopterid subfamily Tonsalinae.[299]
  • A well-preserved scapula of a plotopterid, enabling the reconstruction of the triosseal canal in plotopterids, is described from the Oligocene Jinnobaru Formation (Japan) by Ando & Fukata (2018).[300]
  • Fossil remains of the spectacled cormorant (Phalacrocorax perspicillatus) are described from the upper Pleistocene of Shiriya (northeast Japan) by Watanabe, Matsuoka & Hasegawa (2018).[301]
  • Extinct lowland kagu (Rhynochetos orarius) is reinterpreted as synonymous with extant kagu (Rhynochetos jubatus) by Theuerkauf & Gula (2018).[302]
  • A study on the phylogenetic relationships of the Rodrigues owl and Mauritius owl is published by Louchart et al. (2018).[303]
  • Fossils of the barn owl (Tyto alba) are described from the Dinaledi Chamber of the Rising Star Cave system (South Africa) by Kruger & Badenhorst (2018), who also evaluate how these bird bones were introduced into the Dinaledi Chamber.[304]
  • New fossils of stem-mousebirds belonging to the family Sandcoleidae, providing new information on the anatomy of members of this family, are described from the Eocene of the Messel pit (Germany) by Mayr (2018).[305]
  • Partial skeleton of an early member of Coraciiformes of uncertain generic and specific assignment, showing several previously unknown features of the skull and vertebral column of early coraciiforms, is described from the Lower Eocene (53.5–51.5 million years old) London Clay (United Kingdom) by Mayr & Walsh (2018).[306]
  • New phorusrhacid fossils are described from the Pleistocene of Uruguay by Jones et al. (2018), providing evidence of survival of phorusrhacids until the end of the Pleistocene.[307]
  • A study on the phylogenetic relationships of the extinct Cuban macaw (Ara tricolor) is published by Johansson et al. (2018).[308]
  • A study on an ancient DNA of scarlet macaws recovered from archaeological sites in Chaco Canyon and the contemporaneous Mimbres area of New Mexico is published by George et al. (2018), who report low genetic diversity in this sample, and interpret their findings as indicating that people at an undiscovered Pre-Hispanic settlement dating between 900 and 1200 CE managed a macaw breeding colony outside their endemic range.[309]
  • A study on the bird fossils from the Olduvai Gorge site (Tanzania) and their implications for inferring the environmental context of the site during the Oldowan-Acheulean transitional period is published by Prassack et al. (2018).[310]
  • A study on the bird fossil assemblage from the Pleistocene of the Rio Secco Cave (north-eastern Italy) and its implications for the palaeoenvironmental reconstructions of the site is published by Carrera et al. (2018).[311]
  • Oswald & Steadman (2018) report nearly 500 (probably late Pleistocene) bird fossils collected on New Providence (The Bahamas) in 1958 and 1960.[312]
  • A study on the fossils of Pleistocene birds collected on Picard Island (Seychelles) in 1987 is published by Hume, Martill & Hing (2018).[313]
  • A revision of non-passeriform landbird fossils from the Pleistocene of Shiriya (northeast Japan) is published by Watanabe, Matsuoka & Hasegawa (2018).[314]
  • Description of Late Pleistocene bird fauna from Buso Doppio del Broion Cave (Berici Hills, Italy), including fossils of the snowy owl and the northern hawk-owl (considered to be markers of a colder climate than the present one) and the first Italian Pleistocene fossil remains of the Eurasian wren and the black redstart, is published by Carrera et al. (2018).[315]
  • Bird eggshell fragments are described from the Fitterer Ranch locality within the Oligocene Brule Formation (North Dakota, United States) by Lawver & Boyd (2018), who name a new ootaxon Metoolithus jacksonae.[316]

New taxa

Aquila claudeguerini[317]

Sp. nov

Valid

Mourer‑Chauviré & Bonifay

Early Pleistocene

{{Flag|France}}

A species of Aquila.

Ardenna davealleni[318]

Sp. nov

Valid

Tennyson & Mannering

Pliocene{{Flag|New Zealand}}

A species of Ardenna.

Chenoanas asiatica[319]

Sp. nov

Valid

Zelenkov et al.

Middle Miocene

{{Flag|China}}
{{Flag|Mongolia}}

A duck.

Cinclosoma elachum[320]

Sp. nov

Valid

Nguyen, Archer & Hand

MioceneRiversleigh World Heritage Area{{Flag|Australia}}

A quail-thrush.

Ducula tihonireasini[321]

Sp. nov

Valid

Rigal, Kirch & Worthy

Holocene{{Flag|French Polynesia}}

An imperial pigeon.

Eogranivora[322]

Gen. et sp. nov

Valid

Zheng et al.

Early CretaceousYixian Formation{{Flag|China}}

An early member of Ornithuromorpha. Genus includes new species E. edentulata.

Gettyia[323]

Gen. et comb. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (Campanian)

Two Medicine Formation{{Flag|United States}}
({{Flag|Montana}})

A member of Enantiornithes belonging to the family Avisauridae. The type species is "Avisaurus" gloriae Varricchio & Chiappe (1995).

Jinguofortis[324]

Gen. et sp. nov

Valid

Wang, Stidham & Zhou

Early CretaceousDabeigou Formation{{Flag|China}}

A basal member of Pygostylia, probably a relative of Chongmingia. Genus includes new species J. perplexus.

Kischinskinia[325]

Gen. et sp. nov

Valid

Volkova & Zelenkov

Early Miocene

{{Flag|Russia}}

A passerine belonging to the group Certhioidea. Genus includes new species K. scandens.

Litorallus[326]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

{{Flag|New Zealand}}

A rail. The type species is L. livezeyi.

Mirarce[323]

Gen. et sp. nov

Valid

Atterholt, Hutchison & O’Connor

Late Cretaceous (late Campanian)

Kaiparowits Formation{{Flag|United States}}
({{Flag|Utah}})

A member of Enantiornithes belonging to the family Avisauridae. The type species is M. eatoni.

Muriwaimanu[327]

Gen. et comb. nov

Valid

Mayr et al.

Late Paleocene

Waipara Greensand

{{Flag|New Zealand}}

An early penguin; a new genus for "Waimanu" tuatahi Ando, Jones & Fordyce in Slack et al. (2006).

Pandion pannonicus[328]

Sp. nov

Valid

Kessler

Late Oligocene

{{Flag|Hungary}}

A species of Pandion.

Panraogallus[329]

Gen. et sp. nov

Li et al.

Late Miocene

Liushu Formation{{Flag|China}}

A member of the family Phasianidae. The type species is P. hezhengensis.

Priscaweka[326]

Gen. et sp. nov

Valid

Mather et al.

Early Miocene (Altonian)

Bannockburn Formation

{{Flag|New Zealand}}

A rail. The type species is P. parvales.

Rallus gracilipes[330]

Sp. nov

Valid

Takano & Steadman

Late Pleistocene

{{Flag|The Bahamas}}

A rail, a species of Rallus.

Romainvillia kazakhstanensis[331]

Sp. nov

Valid

Zelenkov

Late Eocene

Kustovskaya Formation{{Flag|Kazakhstan}}

A member of Anseriformes belonging to the family Romainvillidae.

Scolopax mira ohyamai[332]

Subsp. nov.

Valid

Matsuoka & Hasegawa

Late Pleistocene

{{Flag|Japan}}

An extinct subspecies of the Amami woodcock (Scolopax mira).

Sequiwaimanu[327]

Gen. et sp. nov

Valid

Mayr et al.

Middle Paleocene

Waipara Greensand

{{Flag|New Zealand}}

An early penguin. Genus includes new species S. rosieae.

Vanellus liffyae[333]

Sp. nov.

Valid

De Pietri et al.

Late Pliocene

{{Flag|Australia}}

A species of Vanellus.

Vorombe[334]

Gen. et comb. nov

Hansford & Turvey

Holocene{{Flag|Madagascar}}

An elephant bird. The type species is "Aepyornis" titan Andrews (1894).

Winnicavis[335]

Gen. et sp. nov

Valid

Bocheński et al.

Oligocene (Rupelian)

Menilite Formation{{Flag|Poland}}

A passerine of uncertain phylogenetic placement, approximately the size of a great tit. The type species is W. gorskii.

Yangavis[336]

Gen. et sp. nov

Valid

Wang & Zhou

Early Cretaceous (Aptian)

Yixian Formation{{Flag|China}}

A member of the family Confuciusornithidae. Genus includes new species Y. confucii.

Zygodactylus grandei[337]

Sp. nov.

Valid

Smith, DeBee & Clarke

Early Eocene

Green River Formation{{Flag|United States}}
({{Flag|Wyoming}})

A member of the family Zygodactylidae.

Name Novelty Status Authors Age Unit Location Notes Images

Pterosaurs

Research

  • A study on the morphological diversity of the mandibular shapes in pterosaurs is published by Navarro, Martin-Silverstone & Stubbs (2018).[338]
  • A synthesis of pterosaur dietary interpretations, evaluating how robustly supported different dietary interpretations are within, and between, key pterosaur groups, is published by Bestwick et al. (2018).[339]
  • A study on the validity of six ontogenetic stages in pterosaur life history proposed by Kellner (2015)[340] is published by Dalla Vecchia (2018), who also considers Bergamodactylus wildi to be a junior synonym of Carniadactylus rosenfeldi.[341]
  • A pterosaur humerus from the Late Jurassic of Thailand, originally assigned to the group Azhdarchoidea, is reassigned to the family Rhamphorhynchidae by Unwin & Martill (2018).[342]
  • Description of soft parts preserved in the holotype specimen of Scaphognathus crassirostris is published by Jäger et al. (2018).[343]
  • A tooth of a large pterodactyloid pterosaur, most similar to the teeth of Coloborhynchus and Ludodactylus, is described from the Cretaceous (Albian) Aïn el Guettar Formation (Tunisia) by Martill, Ibrahim & Bouaziz (2018).[344]
  • A new juvenile specimen of Pteranodon (the smallest reported so far) is described from the Smoky Hill Chalk Member of the Niobrara Formation (Kansas, United States) by Bennett (2018).[345]
  • A metacarpal bone of a specimen of Pteranodon, bearing teeth marks likely produced by a shark and by a saurodontid fish, is described from the Campanian Mooreville Chalk (Alabama, United States) by Ehret & Harrell (2018).[346]
  • A series of neck vertebrae of Pteranodon associated with a tooth of the lamniform shark Cretoxyrhina mantelli is described from the Upper Cretaceous Niobrara Formation (Kansas, United States) by Hone, Witton & Habib (2018), who interpret the specimen as evidence of Cretoxyrhina biting Pteranodon.[347]
  • A giant humerus of a tapejaroid pterosaur is described from the Upper Cretaceous Plottier Formation (Argentina) by Ortiz David, González Riga & Kellner (2018).[348]
  • A revision of the taxonomy of Noripterus and other Asian members of the family Dsungaripteridae is published by Hone, Jiang & Xu (2018).[349]
  • A new thalassodromine specimen is described from the Lower Cretaceous Romualdo Formation (Brazil) by Buchmann et al. (2018), providing new information on the anatomy of the postcranial skeleton of members of the group.[350]
  • Redescription of the holotype of Thalassodromeus sethi is published by Pêgas, Costa & Kellner (2018), who transfer the species Banguela oberlii to the genus Thalassodromeus.[351]
  • Purported pterosaur pelvis from the Upper Cretaceous (Campanian) Dinosaur Park Formation (Canada) described by Funston, Martin-Silverstone & Currie (2017)[352] is reinterpreted as a broken tyrannosaurid squamosal by Funston, Martin-Silverstone & Currie (2018).[353]
  • Partial mandible of a giant azhdarchid pterosaur, representing the largest pterosaur mandible reported so far, is described from the Upper Cretaceous (Maastrichtian) Hațeg Basin (Romania) by Vremir et al. (2018).[354]

New taxa

Alcione[355]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin{{Flag|Morocco}}

A member of the family Nyctosauridae. The type species is A. elainus.

Barbaridactylus[355]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin{{Flag|Morocco}}

A member of the family Nyctosauridae. The type species is B. grandis.

Caelestiventus[356]

Gen. et sp. nov

Valid

Britt et al.

Late Triassic (probably late Norian or Rhaetian)

Nugget Sandstone{{Flag|United States}}
({{Flag|Utah}})

A relative of Dimorphodon. Genus includes new species C. hanseni.

Klobiodon[357]

Gen. et sp. nov

Valid

O’Sullivan & Martill

Middle Jurassic (Bathonian)

Taynton Limestone Formation{{Flag|United Kingdom}}

A member of the family Rhamphorhynchidae. The type species is K. rochei.

Mistralazhdarcho[358]

Gen. et sp. nov

Valid

Vullo et al.

Late Cretaceous (Campanian)

{{Flag|France}}

A member of the family Azhdarchidae. Genus includes new species M. maggii.

Serradraco[359]

Gen. et comb. nov

Valid

Rigal, Martill & Sweetman

Early Cretaceous (late Valanginian or early Hauterivian)

Upper Tunbridge Wells Sand Formation

{{Flag|United Kingdom}}

A pterodactyloid pterosaur; a new genus for "Pterodactylus" sagittirostris Owen (1874).

Simurghia[355]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin{{Flag|Morocco}}

A member of the family Nyctosauridae. The type species is S. robusta.

Tethydraco[355]

Gen. et sp. nov

Valid

Longrich, Martill & Andres

Late Cretaceous (late Maastrichtian)

Ouled Abdoun Basin{{Flag|Morocco}}

A member of the family Pteranodontidae. The type species is T. regalis.

Vesperopterylus[360]

Gen. et sp. nov

Valid

et al.

Early CretaceousJiufotang Formation{{Flag|China}}

A member of the family Anurognathidae. Genus includes new species V. lamadongensis.

Xericeps[361]

Gen. et sp. nov

Valid

Martill et al.

Cretaceous (Albian or early Cenomanian)

Kem Kem Beds{{Flag|Morocco}}

A member of Azhdarchoidea. The type species is X. curvirostris.

Name Novelty Status Authors Age Unit Location Notes Images

Other archosaurs

Research

  • A study on the anatomy of Teleocrater rhadinus is published by Nesbitt et al. (2018).[362]
  • A study on the phylogenetic relationships of lagerpetid dinosauromorphs is published by Müller, Langer & Dias-da-Silva (2018).[363]
  • New specimen of Dromomeron romeri (potentially representing the youngest known lagerpetid in North America, if not worldwide) is described from the Owl Rock Member of the Chinle Formation (Arizona, United States) by Marsh (2018).[364]
  • A study on the phylogenetic relationships of Pisanosaurus mertii is published by Agnolín & Rozadilla (2018), who interpret the taxon as a likely silesaurid.[365]
  • Reevaluation of Caseosaurus crosbyensis and a study on the phylogenetic relationships of the species is published by Baron & Williams (2018).[366]
  • Fossils of a member of the genus Smok of uncertain specific assignment are described from the Upper Triassic Marciszów site (southern Poland) by Niedźwiedzki & Budziszewska-Karwowska (2018).[367]

New taxa

Soumyasaurus[368]

Gen. et sp. nov

Valid

Sarıgül, Agnolín & Chatterjee

Late TriassicTecovas Formation{{Flag|United States}}
({{Flag|Texas}})

A member of Dinosauriformes, probably a member of the family Silesauridae. The type species is S. aenigmaticus.

Name Novelty Status Authors Age Unit Location Notes Images

References

1. ^{{Cite journal|author1=Robert J. Brocklehurst |author2=Emma R. Schachner |author3=William I. Sellers |year=2018 |title=Vertebral morphometrics and lung structure in non-avian dinosaurs |journal=Royal Society Open Science |volume=5 |issue=10 |pages=180983 |doi=10.1098/rsos.180983 |pmid=30473845 |pmc=6227937 }}
2. ^{{Cite journal|author=Gregory Paul |year=2019 |title=Comment on Brocklehurst et al. |journal=Royal Society Open Science |volume=6 |issue=2 |pages=Article ID 181872 |doi=10.1098/rsos.181872 |pmid=30891298 |pmc=6408402 }}
3. ^{{Cite journal|author1=Armita R. Manafzadeh |author2=Kevin Padian |year=2018 |title=ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1879 |pages=20180727 |doi=10.1098/rspb.2018.0727 |pmid=29794053 |pmc=5998106 }}
4. ^{{Cite journal|author1=Henry P. Tsai |author2=Kevin M. Middleton |author3=John R. Hutchinson |author4=Casey M. Holliday |year=2018 |title=Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia |journal=Journal of Vertebrate Paleontology |volume=38 |issue=1 |pages=e1427593 |doi=10.1080/02724634.2017.1427593 }}
5. ^{{Cite journal|author=Andrea Cau |year=2018 |title=The assembly of the avian body plan: a 160-million-year long process |journal=Bollettino della Società Paleontologica Italiana |volume=57 |issue=1 |pages=1–25 |doi=10.4435/BSPI.2018.01 |url=http://paleoitalia.org/media/u/archives/01_Cau_2018_BSPI_571.pdf }}
6. ^{{Cite journal|author1=Edina Prondvai |author2=Pascal Godefroit |author3=Dominique Adriaens |author4=Dong-Yu Hu |year=2018 |title=Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs |journal=Scientific Reports |volume=8 |pages=Article number 258 |doi=10.1038/s41598-017-18218-9 |pmid=29321475 |pmc=5762864 }}
7. ^{{Cite journal|author1=Maria E. McNamara |author2=Fucheng Zhang |author3=Stuart L. Kearns |author4=Patrick J. Orr |author5=André Toulouse |author6=Tara Foley |author7=David W. E. Hone |author8=Chris S. Rogers |author9=Michael J. Benton |author10=Diane Johnson |author11=Xing Xu |author12=Zhonghe Zhou |year=2018 |title=Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds |journal=Nature Communications |volume=9 |pages=Article number 2072 |doi=10.1038/s41467-018-04443-x |pmid=29802246 |pmc=5970262 }}
8. ^{{Cite journal|author=Chase D. Brownstein |year=2018 |title=Trace fossils on dinosaur bones reveal ecosystem dynamics along the coast of eastern North America during the latest Cretaceous |journal=PeerJ |volume=6 |pages=e4973 |doi=10.7717/peerj.4973 |pmid=29910985 |pmc=6001717 }}
9. ^{{Cite journal|author1=Zhiheng Li |author2=Zhonghe Zhou |author3=Julia A. Clarke |year=2018 |title=Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs |journal=PLoS ONE |volume=13 |issue=6 |pages=e0198078 |doi=10.1371/journal.pone.0198078 |pmid=29924798 |pmc=6010247 }}
10. ^{{Cite journal|author1=Martin Lockley |author2=Rhett Burton |author3=Lisa Grondel |year=2018 |title=A large assemblage of tetrapod tracks from the Cretaceous Naturita Formation, Cedar Canyon region, southwestern Utah |journal=Cretaceous Research |volume=92 |pages=108–121 |doi=10.1016/j.cretres.2018.08.003 }}
11. ^{{cite journal |author=María B. Von Baczko |year=2018 |title=Rediscovered cranial material of Venaticosuchus rusconii enables the first jaw biomechanics in Ornithosuchidae (Archosauria: Pseudosuchia) |journal=Ameghiniana |volume=55 |issue=4 |pages=365–379 |doi=10.5710/AMGH.19.03.2018.3170 }}
12. ^{{cite journal |author1=Sterling J. Nesbitt |author2=Michelle R. Stocker |author3=William G. Parker |author4=Thomas A. Wood |author5=Christian A. Sidor |author6=Kenneth D. Angielczyk |year=2018 |title=The braincase and endocast of Parringtonia gracilis, a Middle Triassic suchian (Archosaur: Pseudosuchia) |journal=Journal of Vertebrate Paleontology |volume=37 |issue=Supplement to No. 6 |pages=122–141 |doi=10.1080/02724634.2017.1393431 }}
13. ^{{cite journal |author1=Ignacio A. Cerda |author2=Julia B. Desojo |author3=Torsten M. Scheyer |year=2018 |title=Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications |journal=Palaeontology |volume=61 |issue=5 |pages=721–745 |doi=10.1111/pala.12363 }}
14. ^{{cite journal |author1=Ana Carolina Biacchi Brust |author2=Julia Brenda Desojo |author3=Cesar Leandro Schultz |author4=Voltaire Dutra Paes-Neto |author5=Átila Augusto Stock Da-Rosa |year=2018 |title=Osteology of the first skull of Aetosauroides scagliai Casamiquela 1960 (Archosauria: Aetosauria) from the Upper Triassic of southern Brazil (Hyperodapedon Assemblage Zone) and its phylogenetic importance |journal=PLoS ONE |volume=13 |issue=8 |pages=e0201450 |doi=10.1371/journal.pone.0201450 |pmid=30110362 |pmc=6093665 }}
15. ^{{cite journal |author1=M. Belen von Baczko |author2=Jeremías R.A. Taborda |author3=Julia Brenda Desojo |year=2018 |title=Paleoneuroanatomy of the aetosaur Neoaetosauroides engaeus (Archosauria: Pseudosuchia) and its paleobiological implications among archosauriforms |journal=PeerJ |volume=6 |pages=e5456 |doi=10.7717/peerj.5456 |pmid=30155359 |pmc=6109373 }}
16. ^{{cite journal |author=William G. Parker |year=2018 |title=Redescription of Calyptosuchus (Stagonolepis) wellesi (Archosauria: Pseudosuchia: Aetosauria) from the Late Triassic of the Southwestern United States with a discussion of genera in vertebrate paleontology |journal=PeerJ |volume=6 |pages=e4291 |doi=10.7717/peerj.4291 |pmid=29416953 |pmc=5798403 }}
17. ^{{cite journal |author1=Devin K. Hoffman |author2=Andrew B. Heckert |author3=Lindsay E. Zanno |year=2018 |title=Under the armor: X-ray computed tomographic reconstruction of the internal skeleton of Coahomasuchus chathamensis (Archosauria: Aetosauria) from the Upper Triassic of North Carolina, USA, and a phylogenetic analysis of Aetosauria |journal=PeerJ |volume=6 |pages=e4368 |doi=10.7717/peerj.4368 |pmid=29456892 |pmc=5815331 }}
18. ^{{cite journal |author=William G. Parker |year=2018 |title=Anatomical notes and discussion of the first described aetosaur Stagonolepis robertsoni (Archosauria: Suchia) from the Upper Triassic of Europe, and the use of plesiomorphies in aetosaur biochronology |journal=PeerJ |volume=6 |pages=e5455 |doi=10.7717/peerj.5455 |pmid=30186682 |pmc=6118205 }}
19. ^{{cite journal |author=Dawid Dróżdż |year=2018 |title=Osteology of a forelimb of an aetosaur Stagonolepis olenkae (Archosauria: Pseudosuchia: Aetosauria) from the Krasiejów locality in Poland and its probable adaptations for a scratch-digging behavior |journal=PeerJ |volume=6 |pages=e5595 |doi=10.7717/peerj.5595 |pmid=30310738 |pmc=6173166 }}
20. ^{{Cite journal|author1=Cedric J. Hagen |author2=Eric M. Roberts |author3=Corwin Sullivan |author4=Jun Liu |author5=Yanyin Wang |author6=Prince C. Owusu Agyemang |author7=Xing Xu |year=2018 |title=Taphonomy, geological age, and paleobiogeography of Lotosaurus adentus (Archosauria: Poposauroidea) from the Middle-Upper Triassic Badong Formation, Hunan, China |journal=Palaios |volume=33 |issue=3 |pages=106–124 |doi=10.2110/palo.2017.084 }}
21. ^{{cite journal |author1=Candice M. Stefanic |author2=Sterling J. Nesbitt |year=2018 |title=The axial skeleton of Poposaurus langstoni (Pseudosuchia: Poposauroidea) and its implications for accessory intervertebral articulation evolution in pseudosuchian archosaurs |journal=PeerJ |volume=6 |pages=e4235 |doi=10.7717/peerj.4235 |pmid=29472991 |pmc=5816584 }}
22. ^{{Cite journal|author1=Kathleen N. Dollman |author2=James M. Clark |author3=Mark A. Norell |author4=Xu Xing |author5=Jonah N. Choiniere |year=2018 |title=Convergent evolution of a eusuchian-type secondary palate within Shartegosuchidae |journal=American Museum Novitates |volume=3901 |pages=1–23 |doi=10.1206/3901.1 |hdl=2246/6896 }}
23. ^{{Cite journal|author1=Yanina Herrera |author2=Juan Martín Leardi |author3=Marta S. Fernández |year=2018 |title=Braincase and endocranial anatomy of two thalattosuchian crocodylomorphs and their relevance in understanding their adaptations to the marine environment |journal=PeerJ |volume=6 |pages=e5686 |doi=10.7717/peerj.5686 |pmid=30515353 |pmc=6263203 }}
24. ^{{Cite journal|author1=Katja Waskow |author2=Detlef Grzegorczyk |author3=P. Martin Sander |year=2018 |title=The first record of Tyrannoneustes (Thalattosuchia: Metriorhynchidae): a complete skull from the Callovian (late Middle Jurassic) of Germany |journal=PalZ |volume=92 |issue=3 |pages=457–480 |doi=10.1007/s12542-017-0395-z }}
25. ^{{Cite journal|author1=Gabriel Lio |author2=Federico L. Agnolin |author3=Agustín G. Martinelli |author4=Martín D. Ezcurra |author5=Fernando E. Novas |year=2018 |title=New specimen of the enigmatic, Late Cretaceous crocodyliform Neuquensuchus universitas sheds light on the anatomy of the species |journal=Cretaceous Research |volume=83 |pages=62–74 |doi=10.1016/j.cretres.2017.09.014 }}
26. ^{{Cite journal|author1=Francisco Barrios |author2=Paula Bona |author3=Ariana Paulina Carabajal |author4=Zulma Gasparini |year=2018 |title=Re-description of the cranio-mandibular anatomy of Notosuchus terrestris (Crocodyliformes, Mesoeucrocodylia) from the Upper Cretaceous of Patagonia |journal=Cretaceous Research |volume=83 |pages=3–39 |doi=10.1016/j.cretres.2017.08.016 }}
27. ^{{Cite journal|author1=Fabiano Vidoi Iori |author2=Thiago da Silva Marinho |author3=Ismar de Souza Carvalho |author4=Luiz Augusto dos Santos Frare |year=2018 |title=Cranial morphology of Morrinhosuchus luziae (Crocodyliformes, Notosuchia) from the Upper Cretaceous of the Bauru Basin, Brazil |journal=Cretaceous Research |volume=86 |pages=41–52 |doi=10.1016/j.cretres.2018.02.010 }}
28. ^{{Cite journal|author1=Fabiano Vidoi Iori |author2=Ismar de Souza Carvalho |year=2018 |title=The Cretaceous crocodyliform Caipirasuchus: Behavioral feeding mechanisms |journal=Cretaceous Research |volume=84 |pages=181–187 |doi=10.1016/j.cretres.2017.11.023 }}
29. ^{{Cite journal|author1=Kamila L. N. Bandeira |author2=Arthur S. Brum |author3=Rodrigo V. Pêgas |author4=Giovanne M. Cidade |author5=Borja Holgado |author6=André Cidade |author7=Rafael Gomes de Souza |year=2018 |title=The Baurusuchidae vs Theropoda record in the Bauru Group (Upper Cretaceous, Brazil): a taphonomic perspective |journal=Journal of Iberian Geology |volume=44 |issue=1 |pages=25–54 |doi=10.1007/s41513-018-0048-4 }}
30. ^{{Cite journal|author1=Pedro L. Godoy |author2=Gabriel S. Ferreira |author3=Felipe C. Montefeltro |author4=Bruno C. Vila Nova |author5=Richard J. Butler |author6=Max C. Langer |year=2018 |title=Evidence for heterochrony in the cranial evolution of fossil crocodyliforms |journal=Palaeontology |volume=61 |issue=4 |pages=543–558 |doi=10.1111/pala.12354 }}
31. ^{{Cite journal|author1=Juan Martín Leardi |author2=Diego Pol |author3=Zulma Gasparini |year=2018 |title=New Patagonian baurusuchids (Crocodylomorpha; Notosuchia) from the Bajo de la Carpa Formation (Upper Cretaceous; Neuquén, Argentina): New evidences of the early sebecosuchian diversification in Gondwana |journal=Comptes Rendus Palevol |volume=17 |issue=8 |pages=504–521 |doi=10.1016/j.crpv.2018.02.002 }}
32. ^{{Cite journal|author1=Mariana V.A.Sena |author2=Rafael C.L.P. Andrade |author3=Juliana M. Sayão |author4=Gustavo R. Oliveira |year=2018 |title=Bone microanatomy of Pepesuchus deiseae (Mesoeucrocodylia, Peirosauridae) reveals a mature individual from the Upper Cretaceous of Brazil |journal=Cretaceous Research |volume=90 |pages=335–348 |doi=10.1016/j.cretres.2018.06.008 }}
33. ^{{Cite journal|author1=D.I. Pashchenko |author2=I.T. Kuzmin |author3=A.G. Sennikov |author4=P.P. Skutschas |author5=M.B. Efimov |year=2018 |title=On the finding of neosuchians (Neosuchia, Crocodyliformes) in the Middle Jurassic (Bathonian) deposits of the Moscow Region |journal=Paleontological Journal |volume=52 |issue=5 |pages=550–562 |doi=10.1134/S0031030118050118 |url=https://elibrary.ru/item.asp?id=35524944 }}
34. ^{{Cite journal|author=Jihed Dridi |year=2018 |title=New fossils of the giant pholidosaurid genus Sarcosuchus from the Early Cretaceous of Tunisia |journal=Journal of African Earth Sciences |volume=147 |pages=268–280 |doi=10.1016/j.jafrearsci.2018.06.023 }}
35. ^{{Cite journal|author1=Louise M. V. Meunier |author2=Hans C. E. Larsson |year=2018 |title=Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous In Beceten Formation of Niger |journal=Zoological Journal of the Linnean Society |volume=182 |issue=3 |pages=659–680 |doi=10.1093/zoolinnean/zlx061 }}
36. ^{{Cite journal|author1=A. de Celis |author2=I. Narváez |author3=F. Ortega |year=2018 |title=Pelvic and femoral anatomy of the Allodaposuchidae (Crocodyliformes, Eusuchia) from the Late Cretaceous of Lo Hueco (Cuenca, Spain) |journal=Journal of Iberian Geology |volume=44 |issue=1 |pages=85–98 |doi=10.1007/s41513-017-0044-0 }}
37. ^{{Cite journal|author1=Tai Kubo |author2=Masateru Shibata |author3=Wilailuck Naksri |author4=Pratueng Jintasakul |author5=Yoichi Azuma |year=2018 |title=The earliest record of Asian Eusuchia from the Lower Cretaceous Khok Kruat Formation of northeastern Thailand |journal=Cretaceous Research |volume=82 |pages=21–28 |doi=10.1016/j.cretres.2017.05.021 }}
38. ^{{Cite journal|author1=Karla J. Leite |author2=Daniel C. Fortier |year=2018 |title=The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications |journal=PeerJ |volume=6 |pages=e5372 |doi=10.7717/peerj.5372 |pmid=30128185 |pmc=6089207 }}
39. ^{{Cite journal|author1=Caitlin E. Syme |author2=Steven W. Salisbury |year=2018 |title=Taphonomy of Isisfordia duncani specimens from the Lower Cretaceous (upper Albian) portion of the Winton Formation, Isisford, central-west Queensland |journal=Royal Society Open Science |volume=5 |issue=3 |pages=171651 |doi=10.1098/rsos.171651 |pmid=29657771 |pmc=5882695 }}
40. ^{{Cite journal|author1=Michael S. Y. Lee |author2=Adam M. Yates |year=2018 |title=Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1881 |pages=20181071 |doi=10.1098/rspb.2018.1071 |pmid=30051855 |pmc=6030529 }}
41. ^{{Cite journal|author1=Masaya Iijima |author2=Tai Kubo |author3=Yoshitsugu Kobayashi |year=2018 |title=Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids |journal=Royal Society Open Science |volume=5 |issue=3 |pages=171774 |doi=10.1098/rsos.171774 |pmid=29657781 |pmc=5882705 }}
42. ^{{cite journal |author1=Adam P. Cossette |author2=Christopher A. Brochu |year=2018 |title=A new specimen of the alligatoroid Bottosaurus harlani and the early history of character evolution in alligatorids |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(22) |doi=10.1080/02724634.2018.1486321 }}
43. ^{{cite journal |author1=Xiao-Chun Wu |author2=Chun Li |author3=Yan-Yin Wang |year=2018 |title=Taxonomic reassessment and phylogenetic test of Asiatosuchus nanlingensis Young, 1964 and Eoalligator chunyii Young, 1964 |journal=Vertebrata PalAsiatica |volume=56 |issue=2 |pages=137–146 |url=http://www.ivpp.cas.cn/cbw/gjzdwxb/xbwzxz/201708/t20170803_4839361.html |doi=10.19615/j.cnki.1000-3118.170803 }}
44. ^{{Cite journal|author1=Christian Foth |author2=María Victoria Fernandez Blanco |author3=Paula Bona |author4=Torsten M. Scheyer |year=2018 |title=Cranial shape variation in jacarean caimanines (Crocodylia, Alligatoroidea) and its implications in the taxonomic status of extinct species: The case of Melanosuchus fisheri |journal=Journal of Morphology |volume=279 |issue=2 |pages=259–273 |doi=10.1002/jmor.20769 |pmid=29139133 }}
45. ^{{Cite journal|author1=Anderson Aires Eduardo |author2=Pablo Ariel Martinez |author3=Sidney Feitosa Gouveia |author4=Franciely da Silva Santos |author5=Wilcilene Santos de Aragão |author6=Jennifer Morales-Barbero |author7=Leonardo Kerber |author8=Alexandre Liparini |year=2018 |title=Extending the paleontology–biogeography reciprocity with SDMs: Exploring models and data in reducing fossil taxonomic uncertainty |journal=PLoS ONE |volume=13 |issue=3 |pages=e0194725 |doi=10.1371/journal.pone.0194725 |pmid=29590174 |pmc=5874039 }}
46. ^{{Cite journal|author1=Andrés Solórzano |author2=Mónica Núñez-Flores |author3=Ascanio D. Rincón |year=2018 |title=Gryposuchus (Crocodylia, Gavialoidea) from the early Miocene of Venezuela |journal=PalZ |volume=92 |issue=1 |pages=121–129 |doi=10.1007/s12542-017-0383-3 }}
47. ^{{Cite journal|author1=Rafael Gomes de Souza |author2=Douglas Riff |author3=Jonas P. de Souza-Filho |author4=Alexander W. A. Kellner |year=2018 |title=Revisiting Gryposuchus jessei Gürich, 1912 (Crocodylia: Gavialoidea): specimen description and comments on the genus |journal=Zootaxa |volume=4457 |issue=1 |pages=167–178 |doi=10.11646/zootaxa.4457.1.9 |pmid=30314186 }}
48. ^{{cite journal |author=Robert E. Weems |year=2018 |title=Crocodilians of the Calvert Cliffs |journal=Smithsonian Contributions to Paleobiology |volume=100 |pages=213–240 |url=https://opensi.si.edu/index.php/smithsonian/catalog/book/107 |doi=10.5479/si.1943-6688.100 }}
49. ^{{cite journal |author1=Ai Ito |author2=Riosuke Aoki |author3=Ren Hirayama |author4=Masataka Yoshida |author5=Hiroo Kon |author6=Hideki Endo |year=2018 |title=The rediscovery and taxonomical reexamination of the longirostrine crocodylian from the Pleistocene of Taiwan |journal=Paleontological Research |volume=22 |issue=2 |pages=150–155 |doi=10.2517/2017PR016 }}
50. ^{{Cite journal|author1=Torsten M. Scheyer |author2=Massimo Delfino |author3=Nicole Klein |author4=Nancy Bunbury |author5=Frauke Fleischer-Dogley |author6=Dennis M. Hansen |year=2018 |title=Trophic interactions between larger crocodylians and giant tortoises on Aldabra Atoll, Western Indian Ocean, during the Late Pleistocene |journal=Royal Society Open Science |volume=5 |issue=1 |pages=171800 |doi=10.1098/rsos.171800 |pmid=29410873 |pmc=5792950 }}
51. ^{{cite journal |author1=Gary S. Morgan |author2=Nancy A. Albury |author3=Renato Rímoli |author4=Phillip Lehman |author5=Alfred L. Rosenberger |author6=Siobhán B. Cooke |year=2018 |title=The Cuban crocodile (Crocodylus rhombifer) from Late Quaternary underwater cave deposits in the Dominican Republic |journal=American Museum Novitates |volume=3916 |pages=1–56 |doi=10.1206/3916.1 |hdl=2246/6920 }}
52. ^{{cite journal |author1=Rodolfo Salas-Gismondi |author2=Jorge W. Moreno-Bernal |author3=Torsten M. Scheyer |author4=Marcelo R. Sánchez-Villagra |author5=Carlos Jaramillo |year=2018 |title=New Miocene Caribbean gavialoids and patterns of longirostry in crocodylians |journal=Journal of Systematic Palaeontology |volume=Online edition |issue= |pages= |doi=10.1080/14772019.2018.1495275 }}
53. ^{{cite journal |author1=Jorgo Ristevski |author2=Mark T. Young |author3=Marco Brandalise de Andrade |author4=Alexander K. Hastings |year=2018 |title=A new species of Anteophthalmosuchus (Crocodylomorpha, Goniopholididae) from the Lower Cretaceous of the Isle of Wight, United Kingdom, and a review of the genus |journal=Cretaceous Research |volume=84 |pages=340–383 |doi=10.1016/j.cretres.2017.11.008 }}
54. ^{{cite journal |author1=Agustín G. Martinelli |author2=Thiago S. Marinho |author3=Fabiano V. Iori |author4=Luiz Carlos B. Ribeiro |year=2018 |title=The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy |journal=PeerJ |volume=6 |pages=e5594 |doi=10.7717/peerj.5594 |pmid=30202663 |pmc=6129144 }}
55. ^{{cite journal |author1=L.S. Filippi |author2=F. Barrios |author3=A.C. Garrido |year=2018 |title=A new peirosaurid from the Bajo de la Carpa Formation (Upper Cretaceous, Santonian) of Cerro Overo, Neuquén, Argentina |journal=Cretaceous Research |volume=83 |pages=75–83 |doi=10.1016/j.cretres.2017.10.021 }}
56. ^{{cite journal |author1=Attila Ősi |author2=Mark T. Young |author3=András Galácz |author4=Márton Rabi |year=2018 |title=A new large-bodied thalattosuchian crocodyliform from the Lower Jurassic (Toarcian) of Hungary, with further evidence of the mosaic acquisition of marine adaptations in Metriorhynchoidea |journal=PeerJ |volume=6 |pages=e4668 |doi=10.7717/peerj.4668 |pmid=29761038 |pmc=5949208 }}
57. ^{{cite journal |author1=Jair I. Barrientos-Lara |author2=Jesús Alvarado-Ortega |author3=Marta S. Fernández |year=2018 |title=The marine crocodile Maledictosuchus (Thalattosuchia, Metriorhynchidae) from the Kimmeridgian deposits of Tlaxiaco, Oaxaca, southern Mexico |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(14) |doi=10.1080/02724634.2018.1478419 }}
58. ^{{cite journal |author1=Richard J. Butler |author2=Sterling J. Nesbitt |author3=Alan J. Charig |author4=David J. Gower |author5=Paul M. Barrett |year=2018 |title=Mandasuchus tanyauchen, gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania |journal=Journal of Vertebrate Paleontology |volume=37 |issue=Supplement to No. 6 |pages=96–121 |doi=10.1080/02724634.2017.1343728 }}
59. ^{{cite journal |author1=Marcel B. Lacerda |author2=Marco A. G. de França |author3=Cesar L. Schultz |year=2018 |title=A new erpetosuchid (Pseudosuchia, Archosauria) from the Middle–Late Triassic of Southern Brazil |journal=Zoological Journal of the Linnean Society |volume=184 |issue=3 |pages=804–824 |doi=10.1093/zoolinnean/zly008 }}
60. ^{{cite journal |author1=Octávio Mateus |author2=Eduardo Puértolas-Pascual |author3=Pedro M. Callapez |year=2018 |title=A new eusuchian crocodylomorph from the Cenomanian (Late Cretaceous) of Portugal reveals novel implications on the origin of Crocodylia |journal=Zoological Journal of the Linnean Society |volume=Online edition |issue= |pages= |doi=10.1093/zoolinnean/zly064 }}
61. ^{{Cite journal|author1=Paula Bona |author2=Martín D. Ezcurra |author3=Francisco Barrios |author4=María V. Fernandez Blanco |year=2018 |title=A new Palaeocene crocodylian from southern Argentina sheds light on the early history of caimanines |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1885 |pages=20180843 |doi=10.1098/rspb.2018.0843 |pmid=30135152 |pmc=6125902 }}
62. ^{{cite journal |author1=André E. Piacentini Pinheiro |author2=Paulo Victor Luiz Gomes da Costa Pereira |author3=Rafael G. de Souza |author4=Arthur S. Brum |author5=Ricardo T. Lopes |author6=Alessandra S. Machado |author7=Lílian P. Bergqvist |author8=Felipe M. Simbras |year=2018 |title=Reassessment of the enigmatic crocodyliform "Goniopholis" paulistanus Roxo, 1936: Historical approach, systematic, and description by new materials |journal=PLoS ONE |volume=13 |issue=8 |pages=e0199984 |doi=10.1371/journal.pone.0199984 |pmid=30067779 |pmc=6070184 }}
63. ^{{Cite journal|last=Foster|first=J.|date=2018|title=A new atoposaurid crocodylomorph from the Morrison Formation (Upper Jurassic) of Wyoming, USA|url=https://www.utahgeology.org/giw/index.php/giw/article/view/32|journal=Geology of the Intermountain West|language=en|volume=5|pages=287–295|doi=10.31711/giw.v5i0.32|issn=2380-7601}}
64. ^{{cite journal |author1=Sara Saber |author2=Joseph J.W. Sertich |author3=Hesham M. Sallam |author4=Khaled A. Ouda |author5=Patrick M. O'Connor |author6=Erik R. Seiffert |year=2018 |title=An enigmatic crocodyliform from the Upper Cretaceous Quseir Formation, central Egypt |journal=Cretaceous Research |volume=90 |pages=174–184 |doi=10.1016/j.cretres.2018.04.004 }}
65. ^{{Cite journal|author1=Roger B. J. Benson |author2=Gene Hunt |author3=Matthew T. Carrano |author4=Nicolás Campione |year=2018 |title=Cope's rule and the adaptive landscape of dinosaur body size evolution |journal=Palaeontology |volume=61 |issue=1 |pages=13–48 |doi=10.1111/pala.12329 }}
66. ^{{Cite journal|author1=Ciara O’Donovan |author2=Andrew Meade |author3=Chris Venditti |year=2018 |title=Dinosaurs reveal the geographical signature of an evolutionary radiation |journal=Nature Ecology & Evolution |volume=2 |issue=3 |pages=452–458 |doi=10.1038/s41559-017-0454-6 |pmid=29403079 }}
67. ^{{Cite journal|author1=Jonathan P. Tennant |author2=Alfio Alessandro Chiarenza |author3=Matthew Baron |year=2018 |title=How has our knowledge of dinosaur diversity through geologic time changed through research history? |journal=PeerJ |volume=6 |pages=e4417 |doi=10.7717/peerj.4417 |pmid=29479504 |pmc=5822849 }}
68. ^{{Cite journal|author1=Loredana Macaluso |author2=Emanuel Tschopp |year=2018 |title=Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory |journal=Palaeontology |volume=61 |issue=5 |pages=703–719 |doi=10.1111/pala.12362 }}
69. ^{{Cite journal|author1=Shiro Egawa |author2=Daisuke Saito |author3=Gembu Abe |author4=Koji Tamura |year=2018 |title=Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum |journal=Royal Society Open Science |volume=5 |issue=10 |pages=180604 |doi=10.1098/rsos.180604 |pmid=30473817 |pmc=6227947 }}
70. ^{{Cite journal|author1=Kohei Tanaka |author2=Darla K. Zelenitsky |author3=François Therrien |author4=Yoshitsugu Kobayashi |year=2018 |title=Nest substrate reflects incubation style in extant archosaurs with implications for dinosaur nesting habits |journal=Scientific Reports |volume=8 |pages=Article number 3170 |doi=10.1038/s41598-018-21386-x |pmid=29545620 |pmc=5854591 }}
71. ^{{Cite journal|author1=Jasmina Wiemann |author2=Tzu-Ruei Yang |author3=Mark A. Norell |year=2018 |title=Dinosaur egg colour had a single evolutionary origin |journal=Nature |volume=563 |issue=7732 |pages=555–558 |doi=10.1038/s41586-018-0646-5 |pmid=30464264 }}
72. ^{{Cite journal|author1=Fiona L. Gill |author2=Jürgen Hummel |author3=A. Reza Sharifi |author4=Alexandra P. Lee |author5=Barry H. Lomax |year=2018 |title=Diets of giants: the nutritional value of sauropod diet during the Mesozoic |journal=Palaeontology |volume=61 |issue=5 |pages=647–658 |doi=10.1111/pala.12385 |pmid=30147151 |pmc=6099296 }}
73. ^{{Cite journal|author1=Massimo Bernardi |author2=Piero Gianolla |author3=Fabio Massimo Petti |author4=Paolo Mietto |author5=Michael J. Benton |year=2018 |title=Dinosaur diversification linked with the Carnian Pluvial Episode |journal=Nature Communications |volume=9 |pages=Article number 1499 |doi=10.1038/s41467-018-03996-1 |pmid=29662063 |pmc=5902586 }}
74. ^{{Cite journal|author1=Michael J. Benton |author2=Massimo Bernardi |author3=Cormac Kinsella |year=2018 |title=The Carnian Pluvial Episode and the origin of dinosaurs |journal=Journal of the Geological Society |volume=175 |issue=6 |pages=1019–1026 |doi=10.1144/jgs2018-049 }}
75. ^{{Cite journal|author=Chase D. Brownstein |year=2018 |title=The biogeography and ecology of the Cretaceous non-avian dinosaurs of Appalachia |journal=Palaeontologia Electronica |volume=21 |issue=1 |pages=Article number 21.1.5A |doi=10.26879/801 }}
76. ^{{Cite journal|author1=Markus Lambertz |author2=Filippo Bertozzo |author3=P. Martin Sander |year=2018 |title=Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system |journal=Biology Letters |volume=14 |issue=1 |pages=20170514 |doi=10.1098/rsbl.2017.0514 |pmid=29298825 |pmc=5803587 }}
77. ^{{Cite journal|author1=Sam M. Slater |author2=Charles H. Wellman |author3=Michael Romano |author4=Vivi Vajda |year=2018 |title=Dinosaur-plant interactions within a Middle Jurassic ecosystem—palynology of the Burniston Bay dinosaur footprint locality, Yorkshire, UK |journal=Palaeobiodiversity and Palaeoenvironments |volume=98 |issue=1 |pages=139–151 |doi=10.1007/s12549-017-0309-9 }}
78. ^{{Cite journal|author1=Claudia Inés Serrano-Brañas |author2=Belinda Espinosa-Chávez |author3=Augusta Maccracken |year=2018 |title=Insect damage in dinosaur bones from the Cerro del Pueblo Formation (Late Cretaceous, Campanian) Coahuila, Mexico |journal=Journal of South American Earth Sciences |volume=86 |pages=353–365 |doi=10.1016/j.jsames.2018.07.002 }}
79. ^{{Cite journal|author1=Akhil Rampersadh |author2=Emese M. Bordy |author3=Lara Sciscio |author4=Miengah Abrahams |year=2018 |title=Dinosaur behaviour in an Early Jurassic palaeoecosystem – uppermost Elliot Formation, Ha Nohana, Lesotho |journal=Annales Societatis Geologorum Poloniae |volume=88 |issue=2 |pages=163–179 |doi=10.14241/asgp.2018.010 |url=https://geojournals.pgi.gov.pl/asgp/article/view/26089 }}
80. ^{{Cite journal|author1=Paige E. dePolo |author2=Stephen L. Brusatte |author3=Thomas J. Challands |author4=Davide Foffa |author5=Dugald A. Ross |author6=Mark Wilkinson |author7=Hong-yu Yi |year=2018 |title=A sauropod-dominated tracksite from Rubha nam Brathairean (Brothers’ Point), Isle of Skye, Scotland |journal=Scottish Journal of Geology |volume=54 |issue=1 |pages=1–12 |doi=10.1144/sjg2017-016 }}
81. ^{{Cite journal|author1=Yuong-Nam Lee |author2=Hang-Jae Lee |author3=Sang-Young Han |author4=Euijun Park |author5=Chan Hee Lee |year=2018 |title=A new dinosaur tracksite from the Lower Cretaceous Sanbukdong Formation of Gunsan City, South Korea |journal=Cretaceous Research |volume=91 |pages=208–216 |doi=10.1016/j.cretres.2018.06.003 }}
82. ^{{Cite journal|author1=Anthony R. Fiorillo |author2=Paul J. McCarthy |author3=Yoshitsugu Kobayashi |author4=Carla S. Tomsich |author5=Ronald S. Tykoski |author6=Yuong-Nam Lee |author7=Tomonori Tanaka |author8=Christopher R. Noto |year=2018 |title=An unusual association of hadrosaur and therizinosaur tracks within Late Cretaceous rocks of Denali National Park, Alaska |journal=Scientific Reports |volume=8 |pages=Article number: 11706 |doi=10.1038/s41598-018-30110-8 |pmid=30076347 |pmc=6076232 }}
83. ^{{Cite journal|author1=Martin G. Lockley |author2=Jianjun Li |author3=Lida Xing |author4=Bin Guo |author5=Masaki Matsukawa |year=2018 |title=Large theropod and small sauropod trackmakers from the Lower Cretaceous Jingchuan Formation, Inner Mongolia, China |journal=Cretaceous Research |volume=92 |pages=150–167 |doi=10.1016/j.cretres.2018.07.007 }}
84. ^{{Cite journal|author1=Diego Castanera |author2=Matteo Belvedere |author3=Daniel Marty |author4=Géraldine Paratte |author5=Marielle Lapaire-Cattin |author6=Christel Lovis |author7=Christian A. Meyer |year=2018 |title=A walk in the maze: variation in Late Jurassic tridactyl dinosaur tracks from the Swiss Jura Mountains (NW Switzerland) |journal=PeerJ |volume=6 |pages=e4579 |doi=10.7717/peerj.4579 |pmid=29629243 |pmc=5885975 }}
85. ^{{Cite journal|author1=Brian F. Platt |author2=Celina A. Suarez |author3=Stephen K. Boss |author4=Malcolm Williamson |author5=Jackson Cothren |author6=Jo Ann C. Kvamme |year=2018 |title=LIDAR-based characterization and conservation of the first theropod dinosaur trackways from Arkansas, USA |journal=PLoS ONE |volume=13 |issue=1 |pages=e0190527 |doi=10.1371/journal.pone.0190527 |pmid=29293618 |pmc=5749850 }}
86. ^{{Cite journal|author1=Lida Xing |author2=Martin G. Lockley |author3=Hendrik Klein |author4=Rong Zeng |author5=Sifu Cai |author6=Xiuchun Luo |author7=Chen Li |year=2018 |title=Theropod assemblages and a new ichnotaxon Gigandipus chiappei ichnosp. nov. from the Jiaguan Formation, Lower Cretaceous of Guizhou Province, China |journal=Geoscience Frontiers |volume=9 |issue=6 |pages=1745–1754 |doi=10.1016/j.gsf.2017.12.012 }}
87. ^{{Cite journal|author1=Tingting Zheng |author2=Yi Bai |author3=Qiang Wang |author4=Xufeng Zhu |author5=Kaiyong Fang |author6=Yuan Yao |author7=Yongqiang Zhao |author8=Xiaolin Wang |year=2018 |title=A new ootype of dinosaur egg (Faveoloolithidae: Duovallumoolithus shangdanensis oogen. et oosp. nov.) from the Late Cretaceous in the Shangdan Basin, Shaanxi Province, China |journal=Acta Geologica Sinica (English Edition) |volume=92 |issue=3 |pages=897–903 |doi=10.1111/1755-6724.13581 |url=http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb03002&flag=1 }}
88. ^{{Cite journal|author1=Shukang Zhang |author2=Tzu-Ruei Yang |author3=Zhengqi Li |author4=Yongguo Hu |year=2018 |title=New dinosaur egg material from Yunxian, Hubei Province, China resolves the classification of dendroolithid eggs |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=671–678 |doi=10.4202/app.00523.2018 }}
89. ^{{Cite journal|author1=Tzu-Ruei Yang |author2=Ying-Hsuan Chen |author3=Jasmina Wiemann |author4=Beate Spiering |author5=P. Martin Sander |year=2018 |title=Fossil eggshell cuticle elucidates dinosaur nesting ecology |journal=PeerJ |volume=6 |pages=e5144 |doi=10.7717/peerj.5144 |pmid=30002976 |pmc=6037156 }}
90. ^{{Cite journal|author1=David W.E. Hone |author2=Daniel J. Chure |year=2018 |title=Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod |journal=Lethaia |volume=51 |issue=3 |pages=456–466 |doi=10.1111/let.12267 }}
91. ^{{Cite journal|author1=Sebastian G. Dalman |author2=Spencer G. Lucas |year=2018 |title=New evidence for predatory behavior in tyrannosaurid dinosaurs from the Kirtland Formation (Late Cretaceous, Campanian), northwestern New Mexico |journal=New Mexico Museum of Natural History and Science Bulletin |volume=79 |pages=113–124 |url=https://www.researchgate.net/publication/328676803_NEW_EVIDENCE_FOR_PREDATORY_BEHAVIOR_IN_TYRANNOSAURID_DINOSAURS_FROM_THE_KIRTLAND_FORMATION_LATE_CRETACEOUS_CAMPANIAN_NORTHWESTERN_NEW_MEXICO }}
92. ^{{Cite journal|author1=Angelica Torices |author2=Ryan Wilkinson |author3=Victoria M. Arbour |author4=Jose Ignacio Ruiz-Omeñaca |author5=Philip J. Currie |year=2018 |title=Puncture-and-pull biomechanics in the teeth of predatory coelurosaurian dinosaurs |journal=Current Biology |volume=28 |issue=9 |pages=1467–1474.e2 |doi=10.1016/j.cub.2018.03.042 |pmid=29706515 }}
93. ^{{Cite journal|author1=Evan T. Saitta |author2=Rebecca Gelernte |author3=Jakob Vinther |year=2018 |title=Additional information on the primitive contour and wing feathering of paravian dinosaurs |journal=Palaeontology |volume=61 |issue=2 |pages=273–288 |doi=10.1111/pala.12342 }}
94. ^{{Cite journal|author1=Hang-Jae Lee |author2=Yuong-Nam Lee |author3=Thomas L. Adams |author4=Philip J. Currie |author5=Yoshitsugu Kobayashi |author6=Louis L. Jacobs |author7=Eva B. Koppelhus |year=2018 |title=Theropod trackways associated with a Gallimimus foot skeleton from the Nemegt Formation, Mongolia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=160–167 |doi=10.1016/j.palaeo.2017.10.020 }}
95. ^{{Cite journal|author1=Lida Xing |author2=Nasrollah Abbassi |author3=Martin G. Lockley |year=2018 |title=Enigmatic didactyl tracks from the Jurassic of Iran |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=8 |pages=1132–1138 |doi=10.1080/08912963.2017.1339700 }}
96. ^{{Cite journal|author1=Lida Xing |author2=Martin G. Lockley |author3=Ying Guo |author4=Hendrik Klein |author5=Junqiang Zhang |author6=Li Zhang |author7=W. Scott Persons IV |author8=Anthony Romilio |author9=Yonggang Tang |author10=Xiaoli Wang |year=2018 |title=Multiple parallel deinonychosaurian trackways from a diverse dinosaur track assemblage of the Lower Cretaceous Dasheng Group of Shandong Province, China |journal=Cretaceous Research |volume=90 |pages=40–55 |doi=10.1016/j.cretres.2018.04.005 }}
97. ^{{Cite journal|author1=Kyung Soo Kim |author2=Jong Deock Lim |author3=Martin G. Lockley |author4=Lida Xing |author5=Dong Hee Kim |author6=Laura Piñuela |author7=Anthony Romilio |author8=Jae Sang Yoo |author9=Jin Ho Kim |author10=Jaehong Ahn |year=2018 |title=Smallest known raptor tracks suggest microraptorine activity in lakeshore setting |journal=Scientific Reports |volume=8 |pages=Article number 16908 |doi=10.1038/s41598-018-35289-4 |pmid=30442900 |pmc=6237872 }}
98. ^{{Cite journal|author1=P. J. Bishop |author2=D. F. Graham |author3=L. P. Lamas |author4=J. R. Hutchinson |author5=J. Rubenson |author6=J. A. Hancock |author7=R. S. Wilson |author8=S. A. Hocknull |author9=R. S. Barrett |author10=D. G. Lloyd |author11=C. J. Clemente |year=2018 |title=The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs |journal=PLoS ONE |volume=13 |issue=2 |pages=e0192172 |doi=10.1371/journal.pone.0192172 |pmid=29466362 |pmc=5821450 }}
99. ^{{Cite journal|author1=Peter J. Bishop |author2=Scott A. Hocknull |author3=Christofer J. Clemente |author4=John R. Hutchinson |author5=Andrew A. Farke |author6=Belinda R. Beck |author7=Rod S. Barrett |author8=David G. Lloyd |year=2018 |title=Cancellous bone and theropod dinosaur locomotion. Part I—an examination of cancellous bone architecture in the hindlimb bones of theropods |journal=PeerJ |volume=6 |pages=e5778 |doi=10.7717/peerj.5778 |pmid=30402347 |pmc=6215452 }}
100. ^{{Cite journal|author1=Peter J. Bishop |author2=Scott A. Hocknull |author3=Christofer J. Clemente |author4=John R. Hutchinson |author5=Rod S. Barrett |author6=David G. Lloyd |year=2018 |title=Cancellous bone and theropod dinosaur locomotion. Part II—a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates |journal=PeerJ |volume=6 |pages=e5779 |doi=10.7717/peerj.5779 |pmid=30402348 |pmc=6215447 }}
101. ^{{Cite journal|author1=Peter J. Bishop |author2=Scott A. Hocknull |author3=Christofer J. Clemente |author4=John R. Hutchinson |author5=Andrew A. Farke |author6=Rod S. Barrett |author7=David G. Lloyd |year=2018 |title=Cancellous bone and theropod dinosaur locomotion. Part III—Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds |journal=PeerJ |volume=6 |pages=e5777 |doi=10.7717/peerj.5777 |pmid=30402346 |pmc=6215443 }}
102. ^{{Cite journal|author1=A. Hassler |author2=J. E. Martin |author3=R. Amiot |author4=T. Tacail |author5=F. Arnaud Godet |author6=R. Allain |author7=V. Balter |year=2018 |title=Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1876 |pages=20180197 |doi=10.1098/rspb.2018.0197 |pmid=29643213 |pmc=5904318 }}
103. ^{{Cite journal|author1=Daniel E. Barta |author2=Sterling J. Nesbitt |author3=Mark A. Norell |year=2018 |title=The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation |journal=Journal of Anatomy |volume=232 |issue=1 |pages=80–104 |doi=10.1111/joa.12719 |pmid=29114853 |pmc=5735062 }}
104. ^{{Cite journal|author=C. T. Griffin |year=2018 |title=Developmental patterns and variation among early theropods |journal=Journal of Anatomy |volume=232 |issue=4 |pages=604–640 |doi=10.1111/joa.12775 |pmid=29363129 }}
105. ^{{Cite journal|author=Rafael Delcourt |year=2018 |title=Ceratosaur palaeobiology: new insights on evolution and ecology of the southern rulers |journal=Scientific Reports |volume=8 |pages=Article number 9730 |doi=10.1038/s41598-018-28154-x |pmid=29950661 |pmc=6021374 }}
106. ^{{Cite journal|author1=Arthur Souza Brum |author2=Elaine Batista Machado |author3=Diogenes de Almeida Campos |author4=Alexander Wilhelm Armin Kellner |year=2018 |title=Description of uncommon pneumatic structures of a noasaurid (Theropoda, Dinosauria) cervical vertebra to the Bauru Group (Upper Cretaceous), Brazil |journal=Cretaceous Research |volume=85 |pages=193–206 |doi=10.1016/j.cretres.2017.10.012 }}
107. ^{{Cite journal|author1=Marcos A.F. Sales |author2=Isabel A.P. de Oliveira |author3=Cesar L. Schultz |year=2018 |title=The oldest abelisaurid record from Brazil and the palaeobiogeographic significance of mid-Cretaceous dinosaur assemblages from northern South America |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=508 |pages=107–115 |doi=10.1016/j.palaeo.2018.07.024 }}
108. ^{{cite journal |author1=Ariana Paulina-Carabajal |author2=Leonardo Filippi |year=2018 |title=Neuroanatomy of the abelisaurid theropod Viavenator: The most complete reconstruction of a cranial endocast and inner ear for a South American representative of the clade |journal=Cretaceous Research |volume=83 |pages=84–94 |doi=10.1016/j.cretres.2017.06.013 }}
109. ^{{cite journal |author1=Leonardo S. Filippi |author2=Ariel H. Méndez |author3=Federico A. Gianechini |author4=Rubén D. Juárez Valieri |author5=Alberto C. Garrido |year=2018 |title=Osteology of Viavenator exxoni (Abelisauridae; Furileusauria) from the Bajo de la Carpa Formation, NW Patagonia, Argentina |journal=Cretaceous Research |volume=83 |pages=95–119 |doi=10.1016/j.cretres.2017.07.019 }}
110. ^{{cite journal |author1=Rafael Delcourt |author2=Orlando Nelson Grillo |year=2018 |title=Reassessment of a fragmentary maxilla attributed to Carcharodontosauridae from Presidente Prudente Formation, Brazil |journal=Cretaceous Research |volume=84 |pages=515–524 |doi=10.1016/j.cretres.2017.09.008 }}
111. ^{{cite journal |author1=Oliver W.M. Rauhut |author2=Laura Piñuela |author3=Diego Castanera |author4=José-Carlos García-Ramos |author5=Irene Sánchez Cela |year=2018 |title=The largest European theropod dinosaurs: remains of a gigantic megalosaurid and giant theropod tracks from the Kimmeridgian of Asturias, Spain |journal=PeerJ |volume=6 |pages=e4963 |doi=10.7717/peerj.4963 |pmid=30002951 |pmc=6035862 }}
112. ^{{cite journal |author1=Tito Aureliano |author2=Aline M. Ghilardi |author3=Pedro V. Buck |author4=Matteo Fabbri |author5=Adun Samathi |author6=Rafael Delcourt |author7=Marcelo A. Fernandes |author8=Martin Sander |year=2018 |title=Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil |journal=Cretaceous Research |volume=90 |pages=283–295 |doi=10.1016/j.cretres.2018.04.024 }}
113. ^{{cite journal |author1=Elisabete Malafaia |author2=José Miguel Gasulla |author3=Fernando Escaso |author4=Iván Narváez |author5=José Luis Sanz |author6=Francisco Ortega |year=2018 |title=New spinosaurid (Theropoda, Megalosauroidea) remains from the Arcillas de Morella Formation (upper Barremian) of Morella, Spain |journal=Cretaceous Research |volume=92 |pages=174–183 |doi=10.1016/j.cretres.2018.08.006 }}
114. ^{{cite journal |author1=Simone Maganuco |author2=Cristiano Dal Sasso |year=2018 |title=The smallest biggest theropod dinosaur: a tiny pedal ungual of a juvenile Spinosaurus from the Cretaceous of Morocco |journal=PeerJ |volume=6 |pages=e4785 |doi=10.7717/peerj.4785 |pmid=29868253 |pmc=5984586 }}
115. ^{{cite journal |author=Donald M. Henderson |year=2018 |title=A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic Spinosaurus Stromer, 1915 (Dinosauria: Theropoda) |journal=PeerJ |volume=6 |pages=e5409 |doi=10.7717/peerj.5409 |pmid=30128195 |pmc=6098948 }}
116. ^{{Cite journal|author1=Elena Cuesta |author2=Daniel Vidal |author3=Francisco Ortega |author4=José L. Sanz |year=2018 |title=The cranial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain |journal=Cretaceous Research |volume=91 |pages=176–194 |doi=10.1016/j.cretres.2018.06.007 }}
117. ^{{cite journal |author1=Elena Cuesta |author2=Francisco Ortega |author3=José Luis Sanz |year=2018 |title=Appendicular osteology of Concavenator corcovatus (Theropoda; Carcharodontosauridae; Early Cretaceous; Spain) |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(24) |doi=10.1080/02724634.2018.1485153 }}
118. ^{{Cite journal|author1=Carlos Roberto dos Anjos Candeiro |author2=Stephen Louis Brusatte |author3=Luciano Vidal |author4=Paulo Victor Luiz Gomes da Costa Pereira |year=2018 |title=Paleobiogeographic evolution and distribution of Carcharodontosauridae (Dinosauria, Theropoda) during the middle Cretaceous of North Africa |journal=Papéis Avulsos de Zoologia |volume=58 |pages=e20185829 |doi=10.11606/1807-0205/2018.58.29 }}
119. ^{{cite journal |author=Chase D. Brownstein |year=2018 |title=The distinctive theropod assemblage of the Ellisdale site of New Jersey and its implications for North American dinosaur ecology and evolution during the Cretaceous |journal=Journal of Paleontology |volume=92 |issue=6 |pages=1115–1129 |doi=10.1017/jpa.2018.42 }}
120. ^{{Cite journal|author1=J. A. Frederickson |author2=M. H. Engel |author3=R. L. Cifelli |year=2018 |title=Niche partitioning in theropod dinosaurs: diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.) |journal=Scientific Reports |volume=8 |pages=Article number 17872 |doi=10.1038/s41598-018-35689-6 |pmid=30552378 |pmc=6294763 }}
121. ^{{cite journal |author1=Alexis M. Aranciaga Rolando |author2=Federico Brissón Egli |author3=Marcos A.F. Sales |author4=Agustín G. Martinelli |author5=Juan I. Canale |author6=Martín D. Ezcurra |year=2018 |title=A supposed Gondwanan oviraptorosaur from the Albian of Brazil represents the oldest South American megaraptoran |journal=Cretaceous Research |volume=84 |pages=107–119 |doi=10.1016/j.cretres.2017.10.019 }}
122. ^{{cite journal |author1=Rafael Delcourt |author2=Orlando Nelson Grillo |year=2018 |title=Tyrannosauroids from the Southern Hemisphere: Implications for biogeography, evolution, and taxonomy |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=511 |pages=379–387 |doi=10.1016/j.palaeo.2018.09.003 }}
123. ^{{cite journal |author=Chase Doran Brownstein |year=2018 |title=A tyrannosauroid from the lower Cenomanian of New Jersey and its evolutionary and biogeographic implications |journal=Bulletin of the Peabody Museum of Natural History |volume=59 |issue=1 |pages=95–105 |doi=10.3374/014.058.0210 }}
124. ^{{Cite journal|author=Chase Brownstein |year=2018 |title=Large basal tyrannosauroids from the Maastrichtian and terrestrial vertebrate diversity in the shadow of the K-Pg extinction |journal=The Mosasaur. The Journal of the Delaware Valley Paleontological Society |volume=X |pages=105–115 |url=https://www.researchgate.net/publication/329687124_LARGE_BASAL_TYRANNOSAUROIDS_FROM_THE_MAASTRICHTIAN_AND_TERRESTRIAL_VERTEBRATE_DIVERSITY_IN_THE_SHADOW_OF_THE_K-PG_EXTINCTION }}
125. ^{{cite journal |author=Chase D. Brownstein |year=2018 |title=A tyrannosauroid tibia from the Navesink Formation of New Jersey and its biogeographic and evolutionary implications for North American tyrannosauroids |journal=Cretaceous Research |volume=85 |pages=309–318 |doi=10.1016/j.cretres.2018.01.005 }}
126. ^{{Cite journal|author1=Matthew A. McLain |author2=David Nelsen |author3=Keith Snyder |author4=Christopher T. Griffin |author5=Bethania Siviero |author6=Leonard R. Brand |author7=Arthur V. Chadwick |year=2018 |title=Tyrannosaur cannibalism: a case of a tooth-traced tyrannosaurid bone in the Lance Formation (Maastrichtian), Wyoming |journal=Palaios |volume=33 |issue=4 |pages=164–173 |doi=10.2110/palo.2017.076 }}
127. ^{{Cite journal|author1=Karl T. Bates |author2=Peter L. Falkingham |year=2018 |title=The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex |journal=Journal of Anatomy |volume=233 |issue=5 |pages=625–635 |doi=10.1111/joa.12874 |pmid=30129185 }}
128. ^{{Cite journal|author=Chase Doran Brownstein |year=2017 |title=Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an "Ostrich Dinosaur": biogeographic implications |journal=PeerJ |volume=5 |pages=e3110 |doi=10.7717/peerj.3110 |pmid=28286718 |pmc=5345386 }}
129. ^{{Cite journal|author1=Bradley McFeeters |author2=Michael J. Ryan |author3=Thomas M. Cullen |year=2018 |title=Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): a response to Brownstein (2017) |journal=Vertebrate Anatomy Morphology Palaeontology |volume=6 |pages=60–67 |doi=10.18435/vamp29283 |url=https://journals.library.ualberta.ca/vamp/index.php/VAMP/article/view/29283 }}
130. ^{{Cite journal|author=Chase Doran Brownstein |year=2018 |title=Rebuttal of McFeeters, Ryan and Cullen, 2018, ‘Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)’ |journal=Vertebrate Anatomy Morphology Palaeontology |volume=6 |pages=68–72 |doi=10.18435/vamp29340 |url=https://journals.library.ualberta.ca/vamp/index.php/VAMP/article/view/29340 }}
131. ^{{Cite journal|author1=Bradley McFeeters |author2=Michael J. Ryan |author3=Thomas M. Cullen |year=2018 |title=Response to Brownstein (2018) ‘Rebuttal of McFeeters, Ryan and Cullen, 2018’ |journal=Vertebrate Anatomy Morphology Palaeontology |volume=6 |pages=73–74 |doi=10.18435/vamp29343 |url=https://journals.library.ualberta.ca/vamp/index.php/VAMP/article/view/29343 }}
132. ^{{Cite journal|author1=Tsogtbaatar Chinzorig |author2=Yoshitsugu Kobayashi |author3=Khishigjav Tsogtbaatar |author4=Philip J. Currie |author5=Ryuji Takasaki |author6=Tomonori Tanaka |author7=Masaya Iijima |author8=Rinchen Barsbold |year=2018 |title=Ornithomimosaurs from the Nemegt Formation of Mongolia: manus morphological variation and diversity |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=91–100 |doi=10.1016/j.palaeo.2017.10.031 }}
133. ^{{Cite journal|author1=M.H. Schweitzer |author2=J.A. Watt |author3=R. Avci |author4=L. Knapp |author5=L. Chiappe |author6=M. Norell |author7=M. Marshall |year=1999 |title=Beta‐keratin specific immunological reactivity in feather‐like structures of the Cretaceous alvarezsaurid, Shuvuuia deserti |journal=Journal of Experimental Zoology Part B: Molecular and Developmental Evolution |volume=285 |issue=2 |pages=146–157 |pmid=10440726 }}
134. ^{{Cite journal|author1=Evan T. Saitta |author2=Ian Fletcher |author3=Peter Martin |author4=Michael Pittman |author5=Thomas G. Kaye |author6=Lawrence D. True |author7=Mark A. Norell |author8=Geoffrey D. Abbott |author9=Roger E. Summons |author10=Kirsty Penkman |author11=Jakob Vinther |year=2018 |title=Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils |journal=Organic Geochemistry |volume=125 |pages=142–151 |doi=10.1016/j.orggeochem.2018.09.008 }}
135. ^{{Cite journal|author1=Tian-long Ren |author2=Yu-ye Wang |author3=Zhen-guo Ning |author4=Cai-zhi Shen |author5=Xuan-yu Zhou |author6=Kohei Tanaka |author7=Yong-bo Huang |author8=Cheng-jun Zhang |author9=Jun-chang Lü |year=2018 |title=The first discovery of dinosaur eggs in Laixi area of Qingdao, Shandong Province, and sedimentary environmental analysis |journal=Acta Geoscientica Sinica |volume=39 |issue=2 |pages=241–249 |doi=10.3975/cagsb.2018.020501 }}
136. ^{{Cite journal|author1=David K. Smith |author2=R. Kent Sanders |author3=Douglas G. Wolfe |year=2018 |title=A re-evaluation of the basicranial soft tissues and pneumaticity of the therizinosaurian Nothronychus mckinleyi (Theropoda; Maniraptora) |journal=PLoS ONE |volume=13 |issue=7 |pages=e0198155 |doi=10.1371/journal.pone.0198155 |pmid=30063717 |pmc=6067709 }}
137. ^{{Cite journal|author1=Kohei Tanaka |author2=Darla K. Zelenitsky |author3=Junchang Lü |author4=Christopher L. DeBuhr |author5=Laiping Yi |author6=Songhai Jia |author7=Fang Ding |author8=Mengli Xia |author9=Di Liu |author10=Caizhi Shen |author11=Rongjun Chen |year=2018 |title=Incubation behaviours of oviraptorosaur dinosaurs in relation to body size |journal=Biology Letters |volume=14 |issue=5 |pages=20180135 |doi=10.1098/rsbl.2018.0135 |pmid=29769301 |pmc=6012691 }}
138. ^{{Cite journal|author1=Yaser Saffar Talori |author2=Yun-Fei Liu |author3=Jing-Shan Zhao |author4=Corwin Sullivan |author5=Jingmai K. O’Connor |author6=Zhi-Heng Li |year=2018 |title=Winged forelimbs of the small theropod dinosaur Caudipteryx could have generated small aerodynamic forces during rapid terrestrial locomotion |journal=Scientific Reports |volume=8 |pages=Article number 17854 |doi=10.1038/s41598-018-35966-4 |pmid=30552395 |pmc=6294793 }}
139. ^{{Cite journal|author1=Shuo Wang |author2=Qiyue Zhang |author3=Rui Yang |year=2018 |title=Reevaluation of the dentary structures of caenagnathid oviraptorosaurs (Dinosauria, Theropoda) |journal=Scientific Reports |volume=8 |pages=Article number 391 |doi=10.1038/s41598-017-18703-1 |pmid=29321606 |pmc=5762635 }}
140. ^{{Cite journal|author1=Gregory F. Funston |author2=Philip J. Currie |year=2018 |title=A small caenagnathid tibia from the Horseshoe Canyon Formation (Maastrichtian): Implications for growth and lifestyle in oviraptorosaurs |journal=Cretaceous Research |volume=92 |pages=220–230 |doi=10.1016/j.cretres.2018.08.020 }}
141. ^{{Cite journal|author1=Mark A. Norell |author2=Amy M. Balanoff |author3=Daniel E. Barta |author4=Gregory M. Erickson |year=2018 |title=A second specimen of Citipati osmolskae associated with a nest of eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia |journal=American Museum Novitates |volume=3899 |pages=1–44 |doi=10.1206/3899.1 |hdl=2246/6858 }}
142. ^{{Cite journal|author1=Amy M. Balanoff |author2=Mark A. Norell |author3=Aneila V.C. Hogan |author4=Gabriel S. Bever |year=2018 |title=The endocranial cavity of oviraptorosaur dinosaurs and the increasingly complex, deep history of the avian brain |journal=Brain, Behavior and Evolution |volume=91 |issue=3 |pages=125–135 |doi=10.1159/000488890 |pmid=30099460 }}
143. ^{{Cite journal|author1=Andrea Cau |author2=Daniel Madzia |year=2018 |title=Redescription and affinities of Hulsanpes perlei (Dinosauria, Theropoda) from the Upper Cretaceous of Mongolia |journal=PeerJ |volume=6 |pages=e4868 |doi=10.7717/peerj.4868 |pmid=29868277 |pmc=5978397 }}
144. ^{{Cite journal|author1=Fernando E. Novas |author2=Federico Brissón Egli |author3=Federico L. Agnolin |author4=Federico A. Gianechini |author5=Ignacio Cerda |year=2018 |title=Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Coelurosauria) |journal=Cretaceous Research |volume=83 |pages=127–167 |doi=10.1016/j.cretres.2017.06.003 }}
145. ^{{Cite journal|author1=Matías J. Motta |author2=Federico Brissón Egli |author3=Fernando E. Novas |year=2018 |title=Tail anatomy of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae) and comparisons with other basal paravians |journal=Cretaceous Research |volume=83 |pages=168–181 |doi=10.1016/j.cretres.2017.09.004 }}
146. ^{{Cite journal|author1=Federico A. Gianechini |author2=Peter J. Makovicky |author3=Sebastián Apesteguía |author4=Ignacio Cerda |year=2018 |title=Postcranial skeletal anatomy of the holotype and referred specimens of Buitreraptor gonzalezorum Makovicky, Apesteguía and Agnolín 2005 (Theropoda, Dromaeosauridae), from the Late Cretaceous of Patagonia |journal=PeerJ |volume=6 |pages=e4558 |doi=10.7717/peerj.4558 |pmid=29607264 |pmc=5875404 }}
147. ^{{Cite journal|author=Chase Brownstein |year=2018 |title=A giant dromaeosaurid from North Carolina |journal=Cretaceous Research |volume=92 |pages=1–7 |doi=10.1016/j.cretres.2018.07.006 }}
148. ^{{Cite journal|author1=Ya-Lei Yin |author2=Rui Pei |author3=Chang-Fu Zhou |year=2018 |title=Cranial morphology of Sinovenator changii (Theropoda: Troodontidae) on the new material from the Yixian Formation of western Liaoning, China |journal=PeerJ |volume=6 |pages=e4977 |doi=10.7717/peerj.4977 |pmid=29942679 |pmc=6015489 }}
149. ^{{Cite journal|author1=David J. Varricchio |author2=Martin Kundrát |author3=Jason Hogan |year=2018 |title=An intermediate incubation period and primitive brooding in a theropod dinosaur |journal=Scientific Reports |volume=8 |pages=Article number 12454 |doi=10.1038/s41598-018-30085-6 |pmid=30127534 |pmc=6102251 }}
150. ^{{Cite journal|author1=Xiangqi Guo |author2=Li Xu |author3=Songhai Jia |year=2018 |title=Morphological and phylogenetic study based on new materials of Anchiornis huxleyi (Dinosauria, Theropoda) from Jianchang, western Liaoning, China |journal=Acta Geologica Sinica (English Edition) |volume=92 |issue=1 |pages=1–15 |url=http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb01001&flag=1 |doi=10.1111/1755-6724.13491 }}
151. ^{{Cite journal|author1=Xiaoting Zheng |author2=Xiaoli Wang |author3=Corwin Sullivan |author4=Xiaomei Zhang |author5=Fucheng Zhang |author6=Yan Wang |author7=Feng Li |author8=Xing Xu |year=2018 |title=Exceptional dinosaur fossils reveal early origin of avian-style digestion |journal=Scientific Reports |volume=8 |pages=Article number 14217 |doi=10.1038/s41598-018-32202-x |pmid=30242170 |pmc=6155034 }}
152. ^{{Cite journal|author1=Mario Bronzati |author2=Roger B. J. Benson |author3=Oliver W. M. Rauhut |year=2018 |title=Rapid transformation in the braincase of sauropod dinosaurs: integrated evolution of the braincase and neck in early sauropods? |journal=Palaeontology |volume=61 |issue=2 |pages=289–302 |doi=10.1111/pala.12344 }}
153. ^{{Cite journal|author=Alejandro Otero |year=2018 |title=Forelimb musculature and osteological correlates in Sauropodomorpha (Dinosauria, Saurischia) |journal=PLoS ONE |volume=13 |issue=7 |pages=e0198988 |doi=10.1371/journal.pone.0198988 |pmid=29975691 |pmc=6033415 }}
154. ^{{Cite journal|author1=Ada J. Klinkhamer |author2=Heinrich Mallison |author3=Stephen F. Poropat |author4=George H.K. Sinapius |author5=Stephen Wroe |year=2018 |title=Three‐dimensional musculoskeletal modelling of the sauropodomorph hind limb: the effect of postural change on muscle leverage |journal=The Anatomical Record |volume=301 |issue=12 |pages=2145–2163 |doi=10.1002/ar.23950 |pmid=30299598 }}
155. ^{{Cite journal|author1=Rodrigo T. Müller |author2=Max C. Langer |author3=Mario Bronzati |author4=Cristian P. Pacheco |author5=Sérgio F. Cabreira |author6=Sérgio Dias-Da-Silva |year=2018 |title=Early evolution of sauropodomorphs: anatomy and phylogenetic relationships of a remarkably well-preserved dinosaur from the Upper Triassic of southern Brazil |journal=Zoological Journal of the Linnean Society |volume=184 |issue=4 |pages=1187–1248 |doi=10.1093/zoolinnean/zly009 }}
156. ^{{cite journal |author1=Júlio C.A. Marsola |author2=Jonathas S. Bittencourt |author3=Átila A.S. Da Rosa |author4=Agustín G. Martinelli |author5=Ana Maria Ribeiro |author6=Jorge Ferigolo |author7=Max C. Langer |year=2018 |title=New sauropodomorph and cynodont remains from the Late Triassic Sacisaurus site in southern Brazil and its stratigraphic position in the Norian Caturrita Formation |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=653–669 |doi=10.4202/app.00492.2018 }}
157. ^{{Cite journal|author1=Mario Bronzati |author2=Oliver W. M. Rauhut |year=2018 |title=Braincase redescription of Efraasia minor Huene, 1908 (Dinosauria: Sauropodomorpha) from the Late Triassic of Germany, with comments on the evolution of the sauropodomorph braincase |journal=Zoological Journal of the Linnean Society |volume=182 |issue=1 |pages=173–224 |doi=10.1093/zoolinnean/zlx029 }}
158. ^{{Cite journal|author1=Adam D. Marsh |author2=Timothy B. Rowe |year=2018 |title=Anatomy and systematics of the sauropodomorph Sarahsaurus aurifontanalis from the Early Jurassic Kayenta Formation |journal=PLoS ONE |volume=13 |issue=10 |pages=e0204007 |doi=10.1371/journal.pone.0204007 |pmid=30304035 |pmc=6179219 }}
159. ^{{Cite journal|author1=Kimberley E.J. Chapelle |author2=Jonah N. Choiniere |year=2018 |title=A revised cranial description of Massospondylus carinatus Owen (Dinosauria: Sauropodomorpha) based on computed tomographic scans and a review of cranial characters for basal Sauropodomorpha |journal=PeerJ |volume=6 |pages=e4224 |doi=10.7717/peerj.4224 |pmid=29340238 |pmc=5768178 }}
160. ^{{Cite journal|author1=Lida Xing |author2=Bruce M. Rothschild |author3=Patrick S. Randolph-Quinney |author4=Yi Wang |author5=Alexander H. Parkinson |author6=Hao Ran |year=2018 |title=Possible bite-induced abscess and osteomyelitis in Lufengosaurus (Dinosauria: sauropodomorph) from the Lower Jurassic of the Yimen Basin, China |journal=Scientific Reports |volume=8 |pages=Article number 5045 |doi=10.1038/s41598-018-23451-x |pmid=29568005 |pmc=5864883 }}
161. ^{{Cite journal|author1=Blair W. Mcphee |author2=Jonah N. Choiniere |year=2018 |title=The osteology of Pulanesaura eocollum: implications for the inclusivity of Sauropoda (Dinosauria) |journal=Zoological Journal of the Linnean Society |volume=182 |issue=4 |pages=830–861 |doi=10.1093/zoolinnean/zlx074 }}
162. ^{{Cite journal|author1=Emil Krupandan |author2=Anusuya Chinsamy‐Turan |author3=Diego Pol |year=2018 |title=The long bone histology of the sauropodomorph, Antetonitrus ingenipes |journal=The Anatomical Record |volume=301 |issue=9 |pages=1506–1518 |doi=10.1002/ar.23898 |pmid=30312030 }}
163. ^{{Cite journal|author1=Pia A. Viglietti |author2=Paul M. Barrett |author3=Tim J. Broderick |author4=Darlington Munyikwa |author5=Rowan MacNiven |author6=Lucy Broderick |author7=Kimberley Chapelle |author8=Dave Glynn |author9=Steve Edwards |author10=Michel Zondo |author11=Patricia Broderick |author12=Jonah N. Choiniere |year=2018 |title=Stratigraphy of the Vulcanodon type locality and its implications for regional correlations within the Karoo Supergroup |journal=Journal of African Earth Sciences |volume=137 |pages=149–156 |doi=10.1016/j.jafrearsci.2017.10.015 }}
164. ^{{Cite journal|author1=Cecily S.C. Nicholl |author2=Philip D. Mannion |author3=Paul M. Barrett |year=2018 |title=Sauropod dinosaur remains from a new Early Jurassic locality in the Central High Atlas of Morocco |journal=Acta Palaeontologica Polonica |volume=63 |issue=1 |pages=147–157 |doi=10.4202/app.00425.2017 }}
165. ^{{Cite journal|author1=Femke M. Holwerda |author2=Diego Pol |year=2018 |title=Phylogenetic analysis of Gondwanan basal eusauropods from the Early-Middle Jurasic of Patagonia, Argentina |journal=Spanish Journal of Palaeontology |volume=33 |issue=2 |pages=289–298 |doi=10.7203/sjp.33.2.13604 |url=https://ojs.uv.es/index.php/sjpalaeontology/article/view/13604 }}
166. ^{{Cite journal|author1=Jun Wang |author2=Yong Ye |author3=Rui Pei |author4=Yamin Tian |author5=Chongqin Feng |author6=Daran Zheng |author7=Su-Chin Chang |year=2018 |title=Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution |journal=GSA Bulletin |volume=130 |issue=9–10 |pages=1493–1500 |doi=10.1130/B31910.1 }}
167. ^{{Cite journal|author1=Andrew J. Moore |author2=Jinyou Mo |author3=James M. Clark |author4=Xing Xu |year=2018 |title=Cranial anatomy of Bellusaurus sui (Dinosauria: Eusauropoda) from the Middle-Late Jurassic Shishugou Formation of northwest China and a review of sauropod cranial ontogeny |journal=PeerJ |volume=6 |pages=e4881 |doi=10.7717/peerj.4881 |pmid=29868283 |pmc=5985764 }}
168. ^{{Cite journal|author1=D. Cary Woodruff |author2=Thomas D. Carr |author3=Glenn W. Storrs |author4=Katja Waskow |author5=John B. Scannella |author6=Klara K. Nordén |author7=John P. Wilson |year=2018 |title=The smallest diplodocid skull reveals cranial ontogeny and growth-related dietary changes in the largest dinosaurs |journal=Scientific Reports |volume=8 |pages=Article number 14341 |doi=10.1038/s41598-018-32620-x |pmid=30310088 |pmc=6181913 }}
169. ^{{Cite journal|author1=Emanuel Tschopp |author2=Octávio Mateus |author3=Mark Norell |year=2018 |title=Complex overlapping joints between facial bones allowing limited anterior sliding movements of the snout in diplodocid sauropods |journal=American Museum Novitates |volume=3911 |pages=1–16 |doi=10.1206/3911.1 |hdl=2246/6913 }}
170. ^{{Cite journal|author=Michael P. Taylor |year=2018 |title=Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur |journal=PeerJ |volume=6 |pages=e5212 |doi=10.7717/peerj.5212 |pmid=30002991 |pmc=6037143 }}
171. ^{{Cite journal|author1=Anthony Maltese |author2=Emanuel Tschopp |author3=Femke Holwerda |author4=David Burnham |year=2018 |title=The real Bigfoot: a pes from Wyoming, USA is the largest sauropod pes ever reported and the northern-most occurrence of brachiosaurids in the Upper Jurassic Morrison Formation |journal=PeerJ |volume=6 |pages=e5250 |doi=10.7717/peerj.5250 |pmid=30065867 |pmc=6063209 }}
172. ^{{Cite journal|author1=Brennan Stettner |author2=W. Scott Persons IV |author3=Philip J. Currie |year=2018 |title=A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=168–172 |doi=10.1016/j.palaeo.2017.10.027 }}
173. ^{{Cite journal|author1=Christian A. Meyer |author2=Daniel Marty |author3=Matteo Belvedere |year=2018 |title=Titanosaur trackways from the Late Cretaceous El Molino Formation of Bolivia (Cal Orck’o, Sucre) |journal=Annales Societatis Geologorum Poloniae |volume=88 |issue=2 |pages=223–241 |doi=10.14241/asgp.2018.018 }}
174. ^{{cite journal |author1=Kristina Curry Rogers |author2=Zoe Kulik |year=2018 |title=Osteohistology of Rapetosaurus krausei (Sauropoda: Titanosauria) from the Upper Cretaceous of Madagascar |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(24) |doi=10.1080/02724634.2018.1493689 }}
175. ^{{Cite journal|author1=E. Martín Hechenleitner |author2=Lucas E. Fiorelli |author3=Agustín G. Martinelli |author4=Gerald Grellet-Tinner |year=2018 |title=Titanosaur dinosaurs from the Upper Cretaceous of La Rioja province, NW Argentina |journal=Cretaceous Research |volume=85 |pages=42–59 |doi=10.1016/j.cretres.2018.01.006 }}
176. ^{{Cite journal|author1=E. Martín Hechenleitner |author2=Jeremías R. A. Taborda |author3=Lucas E. Fiorelli |author4=Gerald Grellet-Tinner |author5=Segundo R. Nuñez-Campero |year=2018 |title=Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs |journal=PeerJ |volume=6 |pages=e4971 |doi=10.7717/peerj.4971 |pmid=29910984 |pmc=6003389 }}
177. ^{{cite journal |author1=Verónica Díez Díaz |author2=Géraldine Garcia |author3=Xabier Pereda Suberbiola |author4=Benjamin Jentgen-Ceschino |author5=Koen Stein |author6=Pascal Godefroit |author7=Xavier Valentin |year=2018 |title=The titanosaurian dinosaur Atsinganosaurus velauciensis (Sauropoda) from the Upper Cretaceous of southern France: New material, phylogenetic affinities, and palaeobiogeographical implications |journal=Cretaceous Research |volume=91 |pages=429–456 |doi=10.1016/j.cretres.2018.06.015 }}
178. ^{{cite journal |author1=Bernardo J. Gonzàlez Riga |author2=Philip D. Mannion |author3=Stephen F. Poropat |author4=Leonardo D. Ortiz David |author5=Juan Pedro Coria |year=2018 |title=Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships |journal=Zoological Journal of the Linnean Society |volume=184 |issue=1 |pages=136–181 |doi=10.1093/zoolinnean/zlx103 }}
179. ^{{Cite journal|author1=Philip J. Currie |author2=Jeffrey A. Wilson |author3=Federico Fanti |author4=Buuvei Mainbayar |author5=Khishigjav Tsogtbaatar |year=2018 |title=Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=5–13 |doi=10.1016/j.palaeo.2017.10.035 }}
180. ^{{Cite journal|author1=Femke M. Holwerda |author2=Verónica Díez Díaz |author3=Alejandro Blanco |author4=Roel Montie |author5=Jelle W.F. Reumer |year=2018 |title=Late Cretaceous sauropod tooth morphotypes may provide supporting evidence for faunal connections between North Africa and Southern Europe |journal=PeerJ |volume=6 |pages=e5925 |doi=10.7717/peerj.5925 |pmid=30473934 |pmc=6237117 }}
181. ^{{cite journal |author1=Marcos G. Becerra |author2=Diego Pol |author3=Oliver W.M. Rauhut |author4=Ignacio A. Cerda |year=2016 |title=New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids |journal=Journal of Paleontology |volume=90 |issue=3 |pages=555–577 |doi=10.1017/jpa.2016.24 }}
182. ^{{cite journal |author1=Marcos Gabriel Becerra |author2=Mariano Andres Ramírez |year=2018 |title=Locomotor morphotypes, allometry, linear regressions and the smallest sizes in Ornithischia: estimating body length using hind limb variables |journal=Ameghiniana |volume=55 |issue=5 |pages=491–516 |doi=10.5710/AMGH.27.06.2018.3189 }}
183. ^{{Cite journal|author1=Marcos G. Becerra |author2=Diego Pol |author3=Gertrud E. Rössner |author4=Oliver W. M. Rauhut |year=2018 |title=Heterodonty and double occlusion in Manidens condorensis: a unique adaptation in an Early Jurassic ornithischian improving masticatory efficiency |journal=The Science of Nature |volume=105 |issue=7–8 |pages=Article 41 |doi=10.1007/s00114-018-1569-6 |pmid=29904792 }}
184. ^{{Cite journal|author1=Baoqiao Hao |author2=Qiannan Zhang |author3=Guangzhao Peng |author4=Yong Ye |author5=Hailu You |year=2018 |title=Redescription of Gigantspinosaurus sichuanensis (Dinosauria, Stegosauria) from the Late Jurassic of Sichuan, Southwestern China |journal=Acta Geologica Sinica (English Edition) |volume=92 |issue=2 |pages=431–441 |url=http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb02001&flag=1 |doi=10.1111/1755-6724.13535 }}
185. ^{{Cite journal|author1=Susannah C. R. Maidment |author2=D. Cary Woodruff |author3=John R. Horner |year=2018 |title=A new specimen of the ornithischian dinosaur Hesperosaurus mjosi from the Upper Jurassic Morrison Formation of Montana, U.S.A., and implications for growth and size in Morrison stegosaurs |journal=Journal of Vertebrate Paleontology |volume=38 |issue=1 |pages=e1406366 |doi=10.1080/02724634.2017.1406366 }}
186. ^{{Cite journal|author1=Thomas J. Raven |author2=Susannah C.R. Maidment |year=2018 |title=The systematic position of the enigmatic thyreophoran dinosaur Paranthodon africanus, and the use of basal exemplifiers in phylogenetic analysis |journal=PeerJ |volume=6 |pages=e4529 |doi=10.7717/peerj.4529 |pmid=29576986 |pmc=5865477 }}
187. ^{{Cite journal|author1=Heitor Francischini |author2=Marcos A. F. Sales |author3=Paula Dentzien–Dias |author4=Cesar L. Schultz |year=2018 |title=The presence of ankylosaur tracks in the Guará Formation (Brazil) and remarks on the spatial and temporal distribution of Late Jurassic dinosaurs |journal=Ichnos: an International Journal for Plant and Animal Traces |volume=25 |issue=2–3 |pages=177–191 |doi=10.1080/10420940.2017.1337573 }}
188. ^{{Cite journal|author1=Rubén A. Rodríguez-de la Rosa |author2=María Patricia Velasco-de León |author3=Javier Arellano-Gil |author4=Diego Enrique Lozano-Carmona |year=2018 |title=Middle Jurassic ankylosaur tracks from Mexico |journal=Boletín de la Sociedad Geológica Mexicana |volume=70 |issue=2 |pages=379–395 |doi=10.18268/BSGM2018v70n2a8 }}
189. ^{{Cite journal|author1=Jason M. Bourke |author2=Wm. Ruger Porter |author3=Lawrence M. Witmer |year=2018 |title=Convoluted nasal passages function as efficient heat exchangers in ankylosaurs (Dinosauria: Ornithischia: Thyreophora) |journal=PLoS ONE |volume=13 |issue=12 |pages=e0207381 |doi=10.1371/journal.pone.0207381 |pmid=30566469 |pmc=6300222 }}
190. ^{{Cite journal|author1=Ariana Paulina-Carabajal |author2=Yuong-Nam Lee |author3=Yoshitsugu Kobayashi |author4=Hang-Jae Lee |author5=Philip J. Currie |year=2018 |title=Neuroanatomy of the ankylosaurid dinosaurs Tarchia teresae and Talarurus plicatospineus from the Upper Cretaceous of Mongolia, with comments on endocranial variability among ankylosaurs |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=135–146 |doi=10.1016/j.palaeo.2017.11.030 }}
191. ^{{Cite journal|author1=Jordan C. Mallon |author2=Donald M. Henderson |author3=Colleen M. McDonough |author4=W.J. Loughry |year=2018 |title=A ‘bloat-and-float’ taphonomic model best explains the upside-down preservation of ankylosaurs |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=497 |pages=117–127 |doi=10.1016/j.palaeo.2018.02.010 }}
192. ^{{Cite journal|author1=Jun Chen |author2=Aaron R. H. LeBlanc |author3=Liyong Jin |author4=Timothy Huang |author5=Robert R. Reisz |year=2018 |title=Tooth development, histology, and enamel microstructure in Changchunsaurus parvus: Implications for dental evolution in ornithopod dinosaurs |journal=PLoS ONE |volume=13 |issue=11 |pages=e0205206 |doi=10.1371/journal.pone.0205206 |pmid=30403689 |pmc=6221265 }}
193. ^{{Cite journal|author1=Héctor E. Rivera-Sylva |author2=Eberhard Frey |author3=Wolfgang Stinnesbeck |author4=Natalia Amezcua |author5=Diana Flores Huerta |year=2018 |title=First occurrence of Parksosauridae in Mexico from the Cerro del Pueblo Formation (Late Cretaceous; Late Campanian) at Las Águilas, Coahuila |journal=Boletín de la Sociedad Geológica Mexicana |volume=70 |issue=3 |pages=779–785 |doi=10.18268/BSGM2018v70n3a10 |url=http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca04/7003/%2810%29Rivera.pdf }}
194. ^{{Cite journal|author1=Holly N. Woodward |author2=Thomas H. Rich |author3=Patricia Vickers-Rich |year=2018 |title=The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia |journal=Scientific Reports |volume=8 |pages=Article number 1162 |doi=10.1038/s41598-018-19362-6 |pmid=29348463 |pmc=5773672 }}
195. ^{{Cite journal|author1=Gregory J. Retallack |author2=Jessica M. Theodor |author3=Edward B. Davis |author4=Samantha S. B. Hopkins |author5=Paul Z. Barrett |year=2018 |title=First dinosaur (Ornithopoda) from Early Cretaceous (Albian) of Oregon, U.S.A. |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(5) |doi=10.1080/02724634.2018.1486847 }}
196. ^{{Cite journal|author=Tom Hübner |year=2018 |title=The postcranial ontogeny of Dysalotosaurus lettowvorbecki (Ornithischia: Iguanodontia) and implications for the evolution of ornithopod dinosaurs |journal=Palaeontographica Abteilung A |volume=310 |issue=3–6 |pages=43–120 |doi=10.1127/pala/2018/0072 }}
197. ^{{Cite journal|author1=A. V. Lopatin |author2=A. O. Averianov |author3=V. R. Alifanov |year=2018 |title=New data on dinosaurs of the Crimean Peninsula |journal=Doklady Biological Sciences |volume=482 |issue=1 |pages=206–209 |doi=10.1134/S0012496618050150 |pmid=30402761 }}
198. ^{{cite journal |author1=Francisco Javier Verdú |author2=Rafael Royo-Torres |author3=Alberto Cobos |author4=Luis Alcalá |year=2018 |title=New systematic and phylogenetic data about the early Barremian Iguanodon galvensis (Ornithopoda: Iguanodontoidea) from Spain |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=4 |pages=437–474 |doi=10.1080/08912963.2017.1287179 }}
199. ^{{Cite journal|author1=Yan Wu |author2=Hai-Lu You |author3=Xiao-Qiang Li |year=2018 |title=Dinosaur-associated Poaceae epidermis and phytoliths from the Early Cretaceous of China |journal=National Science Review |volume=5 |issue=5 |pages=721–727 |doi=10.1093/nsr/nwx145 }}
200. ^{{cite journal |author1=Ryuji Takasaki |author2=Kentaro Chiba |author3=Yoshitsugu Kobayashi |author4=Philip J. Currie |author5=Anthony R. Fiorillo |year=2018 |title=Reanalysis of the phylogenetic status of Nipponosaurus sachalinensis (Ornithopoda: Dinosauria) from the Late Cretaceous of Southern Sakhalin |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=5 |pages=694–711 |doi=10.1080/08912963.2017.1317766 }}
201. ^{{Cite journal|author1=Víctor Fondevilla |author2=Fabio Marco Dalla Vecchia |author3=Rodrigo Gaete |author4=Àngel Galobart |author5=Blanca Moncunill-Solé |author6=Meike Köhler |year=2018 |title=Ontogeny and taxonomy of the hadrosaur (Dinosauria, Ornithopoda) remains from Basturs Poble bonebed (late early Maastrichtian, Tremp Syncline, Spain) |journal=PLoS ONE |volume=13 |issue=10 |pages=e0206287 |doi=10.1371/journal.pone.0206287 |pmid=30379888 |pmc=6209292 }}
202. ^{{cite journal |author1=Albert Prieto-Marquez |author2=Merrilee F. Guenther |year=2018 |title=Perinatal specimens of Maiasaura from the Upper Cretaceous of Montana (USA): insights into the early ontogeny of saurolophine hadrosaurid dinosaurs |journal=PeerJ |volume=6 |pages=e4734 |doi=10.7717/peerj.4734 |pmid=29785343 |pmc=5960587 }}
203. ^{{Cite journal|author1=Marcos G. Becerra |author2=Ariana Paulina-Carabajal |author3=Penélope Cruzado-Caballero |author4=Jeremías R.A. Taborda |year=2018 |title=First endocranial description of a South American hadrosaurid: The neuroanatomy of Secernosaurus koerneri from the Late Cretaceous of Argentina |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=693–702 |doi=10.4202/app.00526.2018 }}
204. ^{{Cite journal|author1=Mateusz Wosik |author2=Mark B. Goodwin |author3=David C. Evans |year=2018 |title=A nestling-sized skeleton of Edmontosaurus (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana, U.S.A., with an analysis of ontogenetic limb allometry |journal=Journal of Vertebrate Paleontology |volume=37 |issue=6 |pages=e1398168 |doi=10.1080/02724634.2017.1398168 }}
205. ^{{Cite journal|author1=David G. Taylor |author2=Spencer G. Lucas |year=2018 |title=A Late Cretaceous (Campanian) hadrosaur sacrum from the Cape Sebastian Sandstone, Curry County, Oregon |journal=New Mexico Museum of Natural History and Science Bulletin |volume=79 |pages=695–702 |url=https://www.researchgate.net/publication/328677045_A_LATE_CRETACEOUS_CAMPANIAN_HADROSAUR_SACRUM_FROM_THE_CAPE_SEBASTIAN_SANDSTONE_CURRY_COUNTY_OREGON }}
206. ^{{cite journal |author1=Leonardo Maiorino |author2=Andrew A. Farke |author3=Tassos Kotsakis |author4=Pasquale Raia |author5=Paolo Piras |year=2018 |title=Who is the most stressed? Morphological disparity and mechanical behavior of the feeding apparatus of ceratopsian dinosaurs (Ornithischia, Marginocephalia) |journal=Cretaceous Research |volume=84 |pages=483–500 |doi=10.1016/j.cretres.2017.11.012 }}
207. ^{{Cite journal|author1=Andrew Knapp |author2=Robert J. Knell |author3=Andrew A. Farke |author4=Mark A. Loewen |author5=David W. E. Hone |year=2018 |title=Patterns of divergence in the morphology of ceratopsian dinosaurs: sympatry is not a driver of ornament evolution |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1875 |pages=20180312 |doi=10.1098/rspb.2018.0312 |pmid=29563271 |pmc=5897650 }}
208. ^{{Cite journal|author1=Fenglu Han |author2=Catherine A. Forster |author3=Xing Xu |author4=James M. Clark |year=2018 |title=Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians |journal=Journal of Systematic Palaeontology |volume=16 |issue=14 |pages=1159–1187 |doi=10.1080/14772019.2017.1369185 }}
209. ^{{Cite journal|author=A. V. Podlesnov |year=2018 |title=Morphology of the craniovertebral joint in Psittacosaurus sibiricus (Ornithischia: Ceratopsia) |journal=Paleontological Journal |volume=52 |issue=6 |pages=664–676 |doi=10.1134/S0031030118060096 }}
210. ^{{Cite journal|author1=Yiming He |author2=Peter J. Makovicky |author3=Xing Xu |author4=Hailu You |year=2018 |title=High-resolution computed tomographic analysis of tooth replacement pattern of the basal neoceratopsian Liaoceratops yanzigouensis informs ceratopsian dental evolution |journal=Scientific Reports |volume=8 |pages=Article number 5870 |doi=10.1038/s41598-018-24283-5 |pmid=29651146 |pmc=5897341 }}
211. ^{{Cite journal|author1=Łucja Fostowicz-Frelik |author2=Justyna Słowiak |year=2018 |title=Bone histology of Protoceratops andrewsi from the Late Cretaceous of Mongolia and its biological implications |journal=Acta Palaeontologica Polonica |volume=63 |issue=3 |pages=503–517 |doi=10.4202/app.00463.2018 }}
212. ^{{Cite journal|author=V. S. Tereschenko |year=2018 |title=On polymorphism of Protoceratops andrewsi Granger et Gregory, 1923 (Protoceratopidae, Neoceratopsia) |journal=Paleontological Journal |volume=52 |issue=4 |pages=429–444 |doi=10.1134/S0031030118040135 }}
213. ^{{Cite journal|author=Caleb M. Brown |year=2018 |title=Long-horned Ceratopsidae from the Foremost Formation (Campanian) of southern Alberta |journal=PeerJ |volume=6 |pages=e4265 |doi=10.7717/peerj.4265 |pmid=29362697 |pmc=5774296 }}
214. ^{{Cite journal|author1=Kentaro Chiba |author2=Michael J. Ryan |author3=Federico Fanti |author4=Mark A. Loewen |author5=David C. Evans |year=2018 |title=New material and systematic re-evaluation of Medusaceratops lokii (Dinosauria, Ceratopsidae) from the Judith River Formation (Campanian, Montana) |journal=Journal of Paleontology |volume=92 |issue=2 |pages=272–288 |doi=10.1017/jpa.2017.62 }}
215. ^{{Cite journal|author1=David W.E. Hone |author2=Darren H. Tanke |author3=Caleb M. Brown |year=2018 |title=Bite marks on the frill of a juvenile Centrosaurus from the Late Cretaceous Dinosaur Provincial Park Formation, Alberta, Canada |journal=PeerJ |volume=6 |pages=e5748 |doi=10.7717/peerj.5748 |pmid=30345174 |pmc=6188009 }}
216. ^{{Cite journal|author1=James A. Campbell |author2=Michael J. Ryan |author3=Claudia J. Schröder-Adams |author4=David C. Evans |author5=Robert B. Holmes |year=2018 |title=New insights into chasmosaurine (Dinosauria: Ceratopsidae) skulls from the Upper Cretaceous (Campanian) of Alberta, and an update on the distribution of accessory frill fenestrae in Chasmosaurinae |journal=PeerJ |volume=6 |pages=e5194 |doi=10.7717/peerj.5194 |pmid=30002987 |pmc=6034596 }}
217. ^{{Cite journal|author1=Klara K. Nordén |author2=Thomas L. Stubbs |author3=Albert Prieto-Márquez |author4=Michael J. Benton |year=2018 |title=Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction |journal=Paleobiology |volume=44 |issue=4 |pages=620–637 |doi=10.1017/pab.2018.26 }}
218. ^{{Cite journal|author1=Héctor E. Rivera-Sylva |author2=Eberhard Frey |author3=Wolfgang Stinnesbeck |author4=Gerardo Carbot-Chanona |author5=Iván E. Sanchez-Uribe |author6=José Rubén Guzmán-Gutiérrez |year=2018 |title=Paleodiversity of Late Cretaceous Ankylosauria from Mexico and their phylogenetic significance |journal=Swiss Journal of Palaeontology |volume=137 |issue=1 |pages=83–93 |doi=10.1007/s13358-018-0153-1 }}
219. ^{{Cite journal|author1=Jelle P. Wiersma |author2=Randall B. Irmis |year=2018 |title=A new southern Laramidian ankylosaurid, Akainacephalus johnsoni gen. et sp. nov., from the upper Campanian Kaiparowits Formation of southern Utah, USA |journal=PeerJ |volume=6 |pages=e5016 |doi=10.7717/peerj.5016 |pmid=30065856 |pmc=6063217 }}
220. ^{{Cite journal|author=Paul Penkalski |year=2018 |title=Revised systematics of the armoured dinosaur Euoplocephalus and its allies |journal=Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen |volume=287 |issue=3 |pages=261–306 |doi=10.1127/njgpa/2018/0717 }}
221. ^{{Cite journal|author1=Yilun Yu |author2=Kebai Wang |author3=Shuqing Chen |author4=Corwin Sullivan |author5=Shuo Wang |author6=Peiye Wang |author7=Xing Xu |year=2018 |title=A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with comments on size variation among oviraptorosaurs |journal=Scientific Reports |volume=8 |pages=Article number 5030 |doi=10.1038/s41598-018-23252-2 |pmid=29567954 |pmc=5864915 }}
222. ^{{Cite journal|author1=ReBecca K. Hunt |author2=James H. Quinn |year=2018 |title=A new ornithomimosaur from the Lower Cretaceous Trinity Group of Arkansas |journal=Journal of Vertebrate Paleontology |volume=38 |issue=1 |pages=e1421209 |doi=10.1080/02724634.2017.1421209 }}
223. ^{{Cite journal|author1=G.F. Funston |author2=S.E. Mendonca |author3=P.J. Currie |author4=R. Barsbold |year=2018 |title=Oviraptorosaur anatomy, diversity and ecology in the Nemegt Basin |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=494 |pages=101–120 |doi=10.1016/j.palaeo.2017.10.023 }}
224. ^{{cite journal |author1=Jorge O. Calvo |author2=Bernardo Gonzalez Riga |year=2018 |title=Baalsaurus mansillai gen. et sp. nov. a new titanosaurian sauropod (Late Cretaceous) from Neuquén, Patagonia, Argentina |journal=Anais da Academia Brasileira de Ciências |volume=91 |issue=Suppl. 2 |pages=e20180661 |doi=10.1590/0001-3765201820180661 |pmid=30569970 }}
225. ^{{cite journal |author1=Flávio A. Pretto |author2=Max C. Langer |author3=Cesar L. Schultz |year=2018 |title=A new dinosaur (Saurischia: Sauropodomorpha) from the Late Triassic of Brazil provides insights on the evolution of sauropodomorph body plan |journal=Zoological Journal of the Linnean Society |volume=185 |issue=2 |pages=388–416 |doi=10.1093/zoolinnean/zly028 }}
226. ^{{Cite journal|author1=Xing Xu |author2=Jonah Choiniere |author3=Qingwei Tan |author4=Roger B.J. Benson |author5=James Clark |author6=Corwin Sullivan |author7=Qi Zhao |author8=Fenglu Han |author9=Qingyu Ma |author10=Yiming He |author11=Shuo Wang |author12=Hai Xing |author13=Lin Tan |year=2018 |title=Two Early Cretaceous fossils document transitional stages in alvarezsaurian dinosaur evolution |journal=Current Biology |volume=28 |issue=17 |pages=2853–2860.e3 |doi=10.1016/j.cub.2018.07.057 |pmid=30146153 }}
227. ^{{Cite journal|author1=Xing Xu |author2=Qingwei Tan |author3=Yilong Gao |author4=Zhiqiang Bao |author5=Zhigang Yin |author6=Bin Guo |author7=Junyou Wang |author8=Lin Tan |author9=Yuguang Zhang |author10=Hai Xing |year=2018 |title=A large-sized basal ankylopollexian from East Asia, shedding light on early biogeographic history of Iguanodontia |journal=Science Bulletin |volume=63 |issue=9 |pages=556–563 |doi=10.1016/j.scib.2018.03.016 }}
228. ^{{Cite journal|author1=Dongyu Hu |author2=Julia A. Clarke |author3=Chad M. Eliason |author4=Rui Qiu |author5=Quanguo Li |author6=Matthew D. Shawkey |author7=Cuilin Zhao |author8=Liliana D’Alba |author9=Jinkai Jiang |author10=Xing Xu |year=2018 |title=A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution |journal=Nature Communications |volume=9 |pages=Article number 217 |doi=10.1038/s41467-017-02515-y |pmid=29335537 |pmc=5768872 }}
229. ^{{Cite journal|author1=Edith Simón |author2=Leonardo Salgado |author3=Jorge O. Calvo |year=2018 |title=A new titanosaur sauropod from the Upper Cretaceous of Patagonia, Neuquén Province, Argentina |journal=Ameghiniana |volume=55 |issue=1 |pages=1–29 |doi=10.5710/AMGH.01.08.2017.3051 }}
230. ^{{Cite journal|author1=Terry A. Gates |author2=Khishigjav Tsogtbaatar |author3=Lindsay E. Zanno |author4=Tsogtbaatar Chinzorig |author5=Mahito Watabe |year=2018 |title=A new iguanodontian (Dinosauria: Ornithopoda) from the Early Cretaceous of Mongolia |journal=PeerJ |volume=6 |pages=e5300 |doi=10.7717/peerj.5300 |pmid=30083450 |pmc=6078070 }}
231. ^{{Cite journal|author1=Sebastian G. Dalman |author2=John-Paul M. Hodnett |author3=Asher J. Lichtig |author4=Spencer G. Lucas |year=2018 |title=A new ceratopsid dinosaur (Centrosaurinae: Nasutoceratopsini) from the Fort Crittenden Formation, Upper Cretaceous (Campanian) of Arizona |journal=New Mexico Museum of Natural History and Science Bulletin |volume=79 |pages=141–164 |url=https://www.researchgate.net/publication/328637301_A_NEW_CERATOPSID_DINOSAUR_CENTROSAURINAE_NASUTOCERATOPSINI_FROM_THE_FORT_CRITTENDEN_FORMATION_UPPER_CRETACEOUS_CAMPANIAN_OF_ARIZONA }}
232. ^{{Cite journal|author1=Matthew C. Herne |author2=Alan M. Tait |author3=Vera Weisbecker |author4=Michael Hall |author5=Jay P. Nair |author6=Michael Cleeland |author7=Steven W. Salisbury |year=2018 |title=A new small-bodied ornithopod (Dinosauria, Ornithischia) from a deep, high-energy Early Cretaceous river of the Australian–Antarctic rift system |journal=PeerJ |volume=6 |pages=e4113 |doi=10.7717/peerj.4113 |pmid=29340228 |pmc=5767335 }}
233. ^{{Cite journal|author1=Kenneth Carpenter |author2=Peter M. Galton |year=2018 |title=A photo documentation of bipedal ornithischian dinosaurs from the Upper Jurassic Morrison Formation, USA |journal=Geology of the Intermountain West |volume=5 |pages=167–207 |url=https://www.utahgeology.org/publication/a-photo-documentation-of-bipedal-ornithischian-dinosaurs-from-the-upper-jurassic-morrison-formation-usa/ }}
234. ^{{Cite journal|author1=Andrew T. McDonald |author2=Douglas G. Wolfe |author3=Alton C. Dooley Jr |year=2018 |title=A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico |journal=PeerJ |volume=6 |pages=e5749 |doi=10.7717/peerj.5749 |pmid=30324024 |pmc=6183510 }}
235. ^{{Cite journal|author1=Cecilia Apaldetti |author2=Ricardo N. Martínez |author3=Ignacio A. Cerda |author4=Diego Pol |author5=Oscar Alcober |year=2018 |title=An early trend towards gigantism in Triassic sauropodomorph dinosaurs |journal=Nature Ecology & Evolution |volume=2 |issue=8 |pages=1227–1232 |doi=10.1038/s41559-018-0599-y |url=https://www.researchgate.net/publication/326272978_An_early_trend_towards_gigantism_in_Triassic_sauropodomorph_dinosaurs |pmid=29988169 }}
236. ^{{Cite journal|author1=Andrew T. McDonald |author2=Douglas G. Wolfe |year=2018 |title=A new nodosaurid ankylosaur (Dinosauria: Thyreophora) from the Upper Cretaceous Menefee Formation of New Mexico |journal=PeerJ |volume=6 |pages=e5435 |doi=10.7717/peerj.5435 |pmid=30155354 |pmc=6110256 }}
237. ^{{Cite journal|author1=Wenjie Zheng |author2=Xingsheng Jin |author3=Yoichi Azuma |author4=Qiongying Wang |author5=Kazunori Miyata |author6=Xing Xu |year=2018 |title=The most basal ankylosaurine dinosaur from the Albian–Cenomanian of China, with implications for the evolution of the tail club |journal=Scientific Reports |volume=8 |pages=Article number 3711 |doi=10.1038/s41598-018-21924-7 |pmid=29487376 |pmc=5829254 }}
238. ^{{Cite journal|author1=José I. Canudo |author2=José L. Carballido |author3=Alberto Garrido |author4=Leonardo Salgado |year=2018 |title=A new rebbachisaurid sauropod from the Aptian–Albian, Lower Cretaceous Rayoso Formation, Neuquén, Argentina |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=679–691 |doi=10.4202/app.00524.2018 }}
239. ^{{Cite journal|author1=Blair W. McPhee |author2=Roger B.J. Benson |author3=Jennifer Botha-Brink |author4=Emese M. Bordy |author5=Jonah N. Choiniere |year=2018 |title=A giant dinosaur from the earliest Jurassic of South Africa and the transition to quadrupedality in early sauropodomorphs |journal=Current Biology |volume=28 |issue=19 |pages=3143–3151.e7 |doi=10.1016/j.cub.2018.07.063 |pmid=30270189 }}
240. ^{{Cite journal|author1=Chang-fu Zhou |author2=Wen-hao Wu |author3=Toru Sekiya |author4=Zhi-ming Dong |year=2018 |title=A new Titanosauriformes dinosaur from Jehol Biota of western Liaoning, China |journal=Global Geology |volume=37 |issue=2 |pages=327–333 |doi=10.3969/j.issn.1004-5589.2018.02.001 |url=http://sjdz.jlu.edu.cn/EN/abstract/abstract9375.shtml }}
241. ^{{Cite journal|author1=Xing Xu |author2=Paul Upchurch |author3=Philip D. Mannion |author4=Paul M. Barrett |author5=Omar R. Regalado-Fernandez |author6=Jinyou Mo |author7=Jinfu Ma |author8=Hongan Liu |year=2018 |title=A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs |journal=Nature Communications |volume=9 |pages=Article number 2700 |doi=10.1038/s41467-018-05128-1 |pmid=30042444 |pmc=6057878 }}
242. ^{{cite journal |author1=Rodrigo Temp Müller |author2=Max Cardoso Langer |author3=Sérgio Dias-da-Silva |year=2018 |title=An exceptionally preserved association of complete dinosaur skeletons reveals the oldest long-necked sauropodomorphs |journal=Biology Letters |volume=14 |issue=11 |pages=20180633 |doi=10.1098/rsbl.2018.0633 |pmid=30463923 |pmc=6283919 }}
243. ^{{Cite journal|author1=Hesham M. Sallam |author2=Eric Gorscak |author3=Patrick M. O’Connor |author4=Iman A. El-Dawoudi |author5=Sanaa El-Sayed |author6=Sara Saber |author7=Mahmoud A. Kora |author8=Joseph J. W. Sertich |author9=Erik R. Seiffert |author10=Matthew C. Lamanna |year=2018 |title=New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa |journal=Nature Ecology & Evolution |volume=2 |issue=3 |pages=445–451 |doi=10.1038/s41559-017-0455-5 |pmid=29379183 }}
244. ^{{Cite journal|last=Carpenter|first=K.|date=2018|title=Maraapunisaurus fragillimus, n.g. (formerly Amphicoelias fragillimus), a basal Rebbachisaurid from the Morrison Formation (Upper Jurassic) of Colorado|url=https://www.utahgeology.org/publication/maraapunisaurus-fragillimus-n-g-formerly-amphicoelias-fragillimus-a-basal-rebbachisaurid-from-the-morrison-formation-upper-jurassic-of-colorado/|journal=Geology of the Intermountain West|language=en-US|volume=5|issue=9|pages=227–244|issn=2380-7601|via=}}
245. ^{{cite journal |author1=T. A. Tumanova |author2=V. R. Alifanov |year=2018 |title=First record of stegosaur (Ornithischia, Dinosauria) from the Aptian–Albian of Mongolia |journal=Paleontological Journal |volume=52 |issue=14 |pages=1771–1779 |doi=10.1134/S0031030118140186 }}
246. ^{{Cite journal|last=Lü|first=Jun-chang|last2=Xu|first2=Li|last3=Chang|first3=Hua-li|last4=Jia|first4=Song-hai|last5=Zhang|first5=Ji-ming|last6=Gao|first6=Dian-song|last7=Zhang|first7=Yi-yang|last8=Zhang|first8=Cheng-jun|last9=Ding|first9=Fang|date=2018|title=A new alvarezsaurid dinosaur from the Late Cretaceous Qiupa Formation of Luanchuan, Henan Province, central China|url=https://dx.doi.org/10.31035/cg2018005|journal=China Geology|volume=1|issue=1|pages=28–35|doi=10.31035/cg2018005|issn=2096-5192}}
247. ^{{Cite journal|author1=Cristiano Dal Sasso |author2=Simone Maganuco |author3=Andrea Cau |year=2018 |title=The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds |journal=PeerJ |volume=6 |pages=e5976 |doi=10.7717/peerj.5976 |pmid=30588396 |pmc=6304160 }}
248. ^{{Cite journal|author1=Alexander Averianov |author2=Stepan Ivantsov |author3=Pavel Skutschas |author4=Alexey Faingertz |author5=Sergey Leshchinskiy |year=2018 |title=A new sauropod dinosaur from the Lower Cretaceous Ilek Formation, Western Siberia, Russia |journal=Geobios |volume=51 |issue=1 |pages=1–14 |doi=10.1016/j.geobios.2017.12.004 }}
249. ^{{Cite journal|author1=Juan D. Porfiri |author2=Rubén D. Juárez Valieri |author3=Domenica D.D. Santos |author4=Matthew C. Lamanna |year=2018 |title=A new megaraptoran theropod dinosaur from the Upper Cretaceous Bajo de la Carpa Formation of northwestern Patagonia |journal=Cretaceous Research |volume=89 |pages=302–319 |doi=10.1016/j.cretres.2018.03.014 }}
250. ^{{cite journal |author1=Alexander Averianov |author2=Vladimir Efimov |year=2018 |title=The oldest titanosaurian sauropod of the Northern Hemisphere |journal=Biological Communications |volume=63 |issue=3 |pages=145–162 |doi=10.21638/spbu03.2018.301 |url=https://biocomm.spbu.ru/article/view/1077 }}
251. ^{{Cite journal|author1=Phil R. Bell |author2=Matthew C. Herne |author3=Tom Brougham |author4=Elizabeth T. Smith |year=2018 |title=Ornithopod diversity in the Griman Creek Formation (Cenomanian), New South Wales, Australia |journal=PeerJ |volume=6 |pages=e6008 |doi=10.7717/peerj.6008 |pmid=30533306 |pmc=6284429 }}
252. ^{{Cite journal|author1=Qian-Nan Zhang |author2=Hai-Lu You |author3=Tao Wang |author4=Sankar Chatterjee |year=2018 |title=A new sauropodiform dinosaur with a ‘sauropodan’ skull from the Lower Jurassic Lufeng Formation of Yunnan Province, China |journal=Scientific Reports |volume=8 |pages=Article number 13464 |doi=10.1038/s41598-018-31874-9 |pmid=30194381 |pmc=6128897 }}
253. ^{{cite journal |author1=Daniel Smith-Paredes |author2=Daniel Núñez-León |author3=Sergio Soto-Acuña |author4=Jingmai O’Connor |author5=João Francisco Botelho |author6=Alexander O. Vargas |year=2018 |title=Dinosaur ossification centres in embryonic birds uncover developmental evolution of the skull |journal=Nature Ecology & Evolution |volume=2 |issue=12 |pages=1966–1973 |doi=10.1038/s41559-018-0713-1 |pmid=30455438 }}
254. ^{{cite journal |author1=D. C. Deeming |author2=G. Mayr |year=2018 |title=Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs |journal=Journal of Evolutionary Biology |volume=31 |issue=5 |pages=701–709 |doi=10.1111/jeb.13256 |pmid=29485191 }}
255. ^{{cite journal |author1=Lida Xing |author2=Ryan C. McKellar |author3=Xing Xu |author4=Gang Li |author5=Ming Bai |author6=W. Scott Persons IV |author7=Tetsuto Miyashita |author8=Michael J. Benton |author9=Jianping Zhang |author10=Alexander P. Wolfe |author11=Qiru Yi |author12=Kuowei Tseng |author13=Hao Ran |author14=Philip J. Currie |year=2016 |title=A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber |journal=Current Biology |volume=26 |issue=24 |pages=3352–3360 |doi=10.1016/j.cub.2016.10.008 |pmid=27939315}}
256. ^{{cite journal |author1=Dana J. Rashid |author2=Kevin Surya |author3=Luis M. Chiappe |author4=Nathan Carroll |author5=Kimball L. Garrett |author6=Bino Varghese |author7=Alida Bailleul |author8=Jingmai K. O’Connor |author9=Susan C. Chapman |author10=John R. Horner |year=2018 |title=Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens |journal=Scientific Reports |volume=8 |pages=Article number 9014 |doi=10.1038/s41598-018-27336-x |pmid=29899503 |pmc=5997987 }}
257. ^{{cite journal |author1=Maria Eugenia Leone Gold |author2=Akinobu Watanabe |year=2018 |title=Flightless birds are not neuroanatomical analogs of non-avian dinosaurs |journal=BMC Evolutionary Biology |volume=18 |pages=190 |doi=10.1186/s12862-018-1312-0 |pmid=30545287 |pmc=6293530 }}
258. ^{{cite journal |author1=Mary Higby Schweitzer |author2=Wenxia Zheng |author3=Alison E. Moyer |author4=Peter Sjövall |author5=Johan Lindgren |year=2018 |title=Preservation potential of keratin in deep time |journal=PLoS ONE |volume=13 |issue=11 |pages=e0206569 |doi=10.1371/journal.pone.0206569 |pmid=30485294 |pmc=6261410 }}
259. ^{{cite journal |author1=Lida Xing |author2=Pierre Cockx |author3=Ryan C. McKellar |author4=Jingmai O’Connor |year=2018 |title=Ornamental feathers in Cretaceous Burmese amber: resolving the enigma of rachis-dominated feather structure |journal=Journal of Palaeogeography |volume=7 |pages=Article 13 |doi=10.1186/s42501-018-0014-2 }}
260. ^{{Cite journal|author1=Lida Xing |author2=Ryan C. McKellar |author3=Zhizhong Gao |year=2018 |title=Cretaceous hitchhikers: a possible phoretic association between a pseudoscorpion and bird in Burmese amber |journal=Acta Geologica Sinica (English Edition) |volume=92 |issue=6 |pages=2434–2435 |doi=10.1111/1755-6724.13739 |url=http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb06038&flag=1 }}
261. ^{{Cite journal|author1=Li-Da Xing |author2=Yuan-Chao Hu |author3=Jian-Dong Huang |author4=Qing He |author5=Martin G. Lockley |author6=Michael E. Burns |author7=Jun Fang |year=2018 |title=A redescription of the ichnospecies Koreanaornis anhuiensis (Aves) from the Lower Cretaceous Qiuzhuang Formation at Mingguang city, Anhui Province, China |journal=Journal of Palaeogeography |volume=7 |issue=1 |pages=58–65 |doi=10.1016/j.jop.2017.10.003 }}
262. ^{{Cite journal|author1=Lisa G. Buckley |author2=Richard T. McCrea |author3=Lida Xing |year=2018 |title=First report of Ignotornidae (Aves) from the Lower Cretaceous Gates Formation (Albian) of western Canada, with description of a new ichnospecies of Ignotornis, Ignotornis canadensis ichnosp. nov. |journal=Cretaceous Research |volume=84 |pages=209–222 |doi=10.1016/j.cretres.2017.11.021 }}
263. ^{{Cite journal|author1=Lida Xing |author2=Lisa G. Buckley |author3=Martin G. Lockley |author4=Richard T. McCrea |author5=Yonggang Tang |year=2018 |title=Lower Cretaceous avian tracks from Jiangsu Province, China: A first Chinese report for ichnogenus Goseongornipes (Ignotornidae) |journal=Cretaceous Research |volume=84 |pages=571–577 |doi=10.1016/j.cretres.2017.12.016 }}
264. ^{{Cite journal|author1=Oliver W.M. Rauhut |author2=Christian Foth |author3=Helmut Tischlinger |year=2018 |title=The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria |journal=PeerJ |volume=6 |pages=e4191 |doi=10.7717/peerj.4191 |pmid=29383285 |pmc=5788062 }}
265. ^{{Cite journal|author1=Dennis F. A. E. Voeten |author2=Jorge Cubo |author3=Emmanuel de Margerie |author4=Martin Röper |author5=Vincent Beyrand |author6=Stanislav Bureš |author7=Paul Tafforeau |author8=Sophie Sanchez |year=2018 |title=Wing bone geometry reveals active flight in Archaeopteryx |journal=Nature Communications |volume=9 |pages=Article number 923 |doi=10.1038/s41467-018-03296-8 |pmid=29535376 |pmc=5849612 }}
266. ^{{Cite journal|author1=Jingmai O'Connor |author2=Xiaoli Wang |author3=Corwin Sullivan |author4=Yan Wang |author5=Xiaoting Zheng |author6=Han Hu |author7=Xiaomei Zhang |author8=Zhonghe Zhou |year=2018 |title=First report of gastroliths in the Early Cretaceous basal bird Jeholornis |journal=Cretaceous Research |volume=84 |pages=200–208 |doi=10.1016/j.cretres.2017.10.031 }}
267. ^{{Cite journal|author1=Guillermo Navalón |author2=Qingjin Meng |author3=Jesús Marugán-Lobón |author4=Yuguang Zhang |author5=Baopeng Wang |author6=Hai Xing |author7=Di Liu |author8=Luis M. Chiappe |year=2018 |title=Diversity and evolution of the Confuciusornithidae: Evidence from a new 131-million-year-old specimen from the Huajiying Formation in NE China |journal=Journal of Asian Earth Sciences |volume=152 |pages=12–22 |doi=10.1016/j.jseaes.2017.11.005 }}
268. ^{{Cite journal|author1=Andrzej Elżanowski |author2=D. Stefan Peters |author3=Gerald Mayr |year=2018 |title=Cranial morphology of the Early Cretaceous bird Confuciusornis |journal=Journal of Vertebrate Paleontology |volume=38 |issue=2 |pages=e1439832 |doi=10.1080/02724634.2018.1439832 |url=https://www.researchgate.net/publication/324375428_Cranial_morphology_of_the_Early_Cretaceous_bird_Confuciusornis }}
269. ^{{Cite journal|author1=Quanguo Li |author2=Julia A. Clarke |author3=Ke-Qin Gao |author4=Jennifer A. Peteya |author5=Matthew D. Shawkey |year=2018 |title=Elaborate plumage patterning in a Cretaceous bird |journal=PeerJ |volume=6 |pages=e5831 |doi=10.7717/peerj.5831 |pmid=30405969 |pmc=6216952 }}
270. ^{{Cite journal|author1=Lida Xing |author2=Jingmai K. O'Connor |author3=Ryan C. McKellar |author4=Luis M. Chiappe |author5=Ming Bai |author6=Kuowei Tseng |author7=Jie Zhang |author8=Haidong Yang |author9=Jun Fang |author10=Gang Li |year=2018 |title=A flattened enantiornithine in mid-Cretaceous Burmese amber: morphology and preservation |journal=Science Bulletin |volume=63 |issue=4 |pages=235–243 |doi=10.1016/j.scib.2018.01.019 }}
271. ^{{Cite journal|author1=Fabien Knoll |author2=Luis M. Chiappe |author3=Sophie Sanchez |author4=Russell J. Garwood |author5=Nicholas P. Edwards |author6=Roy A. Wogelius |author7=William I. Sellers |author8=Phillip L. Manning |author9=Francisco Ortega |author10=Francisco J. Serrano |author11=Jesús Marugán-Lobón |author12=Elena Cuesta |author13=Fernando Escaso |author14=Jose Luis Sanz |year=2018 |title=A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds |journal=Nature Communications |volume=9 |pages=Article number 937 |doi=10.1038/s41467-018-03295-9 |pmid=29507288 |pmc=5838198 }}
272. ^{{Cite journal|author1=Francisco J. Serrano |author2=Luis M. Chiappe |author3=Paul Palmqvist |author4=Borja Figueirido |author5=Jesús Marugán-Lobón |author6=José L. Sanz |year=2018 |title=Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds |journal=Palaeontology |volume=61 |issue=3 |pages=359–368 |doi=10.1111/pala.12351 }}
273. ^{{Cite journal|author=A. V. Panteleev |year=2018 |title=Morphology of the coracoid of Late Cretaceous enantiornithines (Aves: Enantiornithes) from Dzharakuduk (Uzbekistan) |journal=Paleontological Journal |volume=52 |issue=2 |pages=201–207 |doi=10.1134/S0031030118020089 }}
274. ^{{Cite journal|author1=Jingmai O’Connor |author2=Gregory M. Erickson |author3=Mark Norell |author4=Alida M. Bailleul |author5=Han Hu |author6=Zhonghe Zhou |year=2018 |title=Medullary bone in an Early Cretaceous enantiornithine bird and discussion regarding its identification in fossils |journal=Nature Communications |volume=9 |pages=Article number 5169 |doi=10.1038/s41467-018-07621-z |pmid=30518763 |pmc=6281594 }}
275. ^{{Cite journal|author1=Xiaoli Wang |author2=Jingmai K. O’Connor |author3=John N. Maina |author4=Yanhong Pan |author5=Min Wang |author6=Yan Wang |author7=Xiaoting Zheng |author8=Zhonghe Zhou |year=2018 |title=Archaeorhynchus preserving significant soft tissue including probable fossilized lungs |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=45 |pages=11555–11560 |doi=10.1073/pnas.1805803115 |pmid=30348768 |pmc=6233124 }}
276. ^{{Cite journal|author1=Xia Wang |author2=Jiandong Huang |author3=Yuanchao Hu |author4=Xiaoyu Liu |author5=Jennifer Peteya |author6=Julia A. Clarke |year=2018 |title=The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines |journal=Scientific Reports |volume=8 |pages=Article number 3969 |doi=10.1038/s41598-018-22412-8 |pmid=29507398 |pmc=5838252 }}
277. ^{{cite journal |author1=Evgeny E. Perkovsky |author2=Ekaterina B. Sukhomlin |author3=Nikita V. Zelenkov |year=2018 |title=An unexpectedly abundant new genus of black flies (Diptera, Simuliidae) from Upper Cretaceous Taimyr amber of Ugolyak, with discussion of the early evolution of birds at high latitudes |journal=Cretaceous Research |volume=90 |pages=80–89 |doi=10.1016/j.cretres.2018.04.002 }}
278. ^{{Cite journal|author1=Daniel J. Field |author2=Michael Hanson |author3=David Burnham |author4=Laura E. Wilson |author5=Kristopher Super |author6=Dana Ehret |author7=Jun A. Ebersole |author8=Bhart-Anjan S. Bhullar |year=2018 |title=Complete Ichthyornis skull illuminates mosaic assembly of the avian head |journal=Nature |volume=557 |issue=7703 |pages=96–100 |doi=10.1038/s41586-018-0053-y |pmid=29720636 }}
279. ^{{Cite journal|author1=Daniel J. Field |author2=Antoine Bercovici |author3=Jacob S. Berv |author4=Regan Dunn |author5=David E. Fastovsky |author6=Tyler R. Lyson |author7=Vivi Vajda |author8=Jacques A. Gauthier |year=2018 |title=Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction |journal=Current Biology |volume=28 |issue=11 |pages=1825–1831.e2 |doi=10.1016/j.cub.2018.04.062 |pmid=29804807 }}
280. ^{{Cite journal|author1=Ryan N. Felice |author2=Anjali Goswami |year=2018 |title=Developmental origins of mosaic evolution in the avian cranium |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=3 |pages=555–560 |doi=10.1073/pnas.1716437115 |pmid=29279399 |pmc=5776993 }}
281. ^{{Cite journal|author1=Alexander P. Boast |author2=Laura S. Weyrich |author3=Jamie R. Wood |author4=Jessica L. Metcalf |author5=Rob Knight |author6=Alan Cooper |year=2018 |title=Coprolites reveal ecological interactions lost with the extinction of New Zealand birds |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=7 |pages=1546–1551 |doi=10.1073/pnas.1712337115 |pmid=29440415 |pmc=5816151 }}
282. ^{{Cite journal|author1=Joanna K. Carpenter |author2=Jamie R. Wood |author3=Janet M. Wilmshurst |author4=Dave Kelly |year=2018 |title=An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1877 |pages=20180352 |doi=10.1098/rspb.2018.0352 |pmid=29669903 |pmc=5936733 }}
283. ^{{Cite journal|author1=Vicki A. Thomson |author2=Kieren J. Mitchell |author3=Rolan Eberhard |author4=Joe Dortch |author5=Jeremy J. Austin |author6=Alan Cooper |year=2018 |title=Genetic diversity and drivers of dwarfism in extinct island emu populations |journal=Biology Letters |volume=14 |issue=4 |pages=20170617 |doi=10.1098/rsbl.2017.0617 |pmid=29618519 |pmc=5938559 }}
284. ^{{Cite journal|author1=James Hansford |author2=Patricia C. Wright |author3=Armand Rasoamiaramanana |author4=Ventura R. Pérez |author5=Laurie R. Godfrey |author6=David Errickson |author7=Tim Thompson |author8=Samuel T. Turvey |year=2018 |title=Early Holocene human presence in Madagascar evidenced by exploitation of avian megafauna |journal=Science Advances |volume=4 |issue=9 |pages=eaat6925 |doi=10.1126/sciadv.aat6925 |pmid=30214938 |pmc=6135541 }}
285. ^{{Cite journal|author1=Christopher R. Torres |author2=Julia A. Clarke |year=2018 |title=Nocturnal giants: evolution of the sensory ecology in elephant birds and other palaeognaths inferred from digital brain reconstructions |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1890 |pages=20181540 |doi=10.1098/rspb.2018.1540 |pmid=30381378 |pmc=6235046 }}
286. ^{{Cite journal|author1=Antoine Louchart |author2=Vivian de Buffrénil |author3=Estelle Bourdon |author4=Maïtena Dumont |author5=Laurent Viriot |author6=Jean-Yves Sire |year=2018 |title=Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions |journal=Scientific Reports |volume=8 |pages=Article number 12952 |doi=10.1038/s41598-018-31022-3 |pmid=30154516 |pmc=6113277 }}
287. ^{{Cite journal|author1=Federico L. Agnolín |author2=Federico Brissón Egli |author3=Sankar Chatterjee |author4=Jordi Alexis Garcia Marsà |author5=Fernando E. Novas |year=2017 |title=Vegaviidae, a new clade of southern diving birds that survived the K/T boundary |journal=The Science of Nature |volume=104 |issue=11–12 |pages=Article 87 |doi=10.1007/s00114-017-1508-y |pmid=28988276 }}
288. ^{{Cite journal|author1=Gerald Mayr |author2=Vanesa L. De Pietri |author3=R. Paul Scofield |author4=Trevor H. Worthy |year=2018 |title=On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 ‒ neornithine birds from the Upper Cretaceous of the Southern Hemisphere |journal=Cretaceous Research |volume=86 |pages=178–185 |doi=10.1016/j.cretres.2018.02.013 }}
289. ^{{Cite journal|author1=N. V. Zelenkov |author2=T. A. Stidham |year=2018 |title=Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves) |journal=Zoologicheskii Zhurnal |volume=97 |issue=8 |pages=943–956 |url=https://www.researchgate.net/publication/327238956_POSSIBLE_FILTER-FEEDING_IN_THE_EXINCT_PRESBYORNIS_AND_THE_EVOLUTION_OF_ANSERIFORMES_AVES }}
290. ^{{Cite journal|author1=Janet C. Buckner |author2=Ryan Ellingson |author3=David A. Gold |author4=Terry L. Jones |author5=David K. Jacobs |year=2018 |title=Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck |journal=Molecular Phylogenetics and Evolution |volume=122 |pages=102–109 |doi=10.1016/j.ympev.2017.12.008 |pmid=29247849 }}
291. ^{{Cite journal|author=L. Schmidt |year=2018 |title=A biological origin for gravel mounds in inland Australia |journal=Australian Journal of Earth Sciences |volume=65 |issue=5 |pages=607–617 |doi=10.1080/08120099.2018.1460865 }}
292. ^{{Cite journal|author1=Daniel J. Field |author2=Allison Y. Hsiang |year=2018 |title=A North American stem turaco, and the complex biogeographic history of modern birds |journal=BMC Evolutionary Biology |volume=18 |pages=102 |doi=10.1186/s12862-018-1212-3 |pmid=29936914 |pmc=6016133 }}
293. ^{{Cite journal|author1=Ursula B. Göhlich |author2=Gerald Mayr |year=2018 |title=The alleged early Miocene Auk Petralca austriaca is a Loon (Aves, Gaviiformes): restudy of a controversial fossil bird |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=8 |pages=1076–1083 |doi= 10.1080/08912963.2017.1333610 }}
294. ^{{Cite journal|author1=Federico J. Degrange |author2=Daniel T. Ksepka |author3=Claudia P. Tambussi |year=2018 |title=Redescription of the oldest crown clade penguin: cranial osteology, jaw myology, neuroanatomy, and phylogenetic affinities of Madrynornis mirandus |journal=Journal of Vertebrate Paleontology |volume=38 |issue=2 |pages=e1445636 |doi=10.1080/02724634.2018.1445636 |url=https://www.researchgate.net/publication/324657795_Redescription_of_the_oldest_crown_clade_penguin_cranial_osteology_jaw_myology_neuroanatomy_and_phylogenetic_affinities_of_Madrynornis_mirandus }}
295. ^{{cite journal |author1=Theresa L. Cole |author2=Jonathan M. Waters |author3=Lara D. Shepherd |author4=Nicolas J. Rawlence |author5=Leo Joseph |author6=Jamie R. Wood |year=2018 |title=Ancient DNA reveals that the ‘extinct’ Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon |journal=Zoological Journal of the Linnean Society |volume=182 |issue=2 |pages=459–464 |doi=10.1093/zoolinnean/zlx043 }}
296. ^{{cite journal |author1=Yuesong Gao |author2=Lianjiao Yang |author3=Jianjun Wang |author4=Zhouqing Xie |author5=Yuhong Wang |author6=Liguang Sun |year=2018 |title=Penguin colonization following the last glacial-interglacial transition in the Vestfold Hills, East Antarctica |journal=Palaeogeography, Palaeoclimatology, Palaeoecology |volume=490 |pages=629–639 |doi=10.1016/j.palaeo.2017.11.053 }}
297. ^{{cite journal |author1=Steven D. Emslie |author2=Ashley McKenzie |author3=William P. Patterson |year=2018 |title=The rise and fall of an ancient Adélie penguin ‘supercolony’ at Cape Adare, Antarctica |journal=Royal Society Open Science |volume=5 |issue=4 |pages=172032 |doi=10.1098/rsos.172032 |pmid=29765656 |pmc=5936921 }}
298. ^{{cite journal |author1=Yuesong Gao |author2=Lianjiao Yang |author3=Zhouqing Xie |author4=Louise Emmerson |author5=Colin Southwell |author6=Yuhong Wang |author7=Liguang Sun |year=2018 |title=Last millennium Adélie penguin mortality and colony abandonment events on Long Peninsula, East Antarctica |journal=Journal of Geophysical Research: Biogeosciences |volume=123 |issue=9 |pages=2878–2889 |doi=10.1029/2018JG004550 }}
299. ^{{cite journal |author1=Gerald Mayr |author2=James L. Goedert |year=2018 |title=First record of a tarsometatarsus of Tonsala hildegardae (Plotopteridae) and other avian remains from the late Eocene/early Oligocene of Washington State (USA) |journal=Geobios |volume=51 |issue=1 |pages=51–59 |doi=10.1016/j.geobios.2017.12.006 }}
300. ^{{cite journal |author1=Tatsuro Ando |author2=Keisaku Fukata |year=2018 |title=A well-preserved partial scapula from Japan and the reconstruction of the triosseal canal of plotopterids |journal=PeerJ |volume=6 |pages=e5391 |doi=10.7717/peerj.5391 |pmid=30155348 |pmc=6112113 }}
301. ^{{cite journal |author1=Junya Watanabe |author2=Hiroshige Matsuoka |author3=Yoshikazu Hasegawa |year=2018 |title=Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict |journal=The Auk |volume=135 |issue=4 |pages=895–907 |doi=10.1642/AUK-18-54.1 }}
302. ^{{cite journal |author1=Jörn Theuerkauf |author2=Roman Gula |year=2018 |title=Indirect evidence for body size reduction in a flightless island bird after human colonisation |journal=Journal of Ornithology |volume=159 |issue=3 |pages=823–826 |doi=10.1007/s10336-018-1545-0 }}
303. ^{{Cite journal|author1=Antoine Louchart |author2=Fabiola Bastian |author3=Marilia Baptista |author4=Perle Guarino‐Vignon |author5=Julian P. Hume |author6=Cécile Jacot‐des‐Combes |author7=Cécile Mourer‐Chauviré |author8=Catherine Hänni |author9=Morgane Ollivier |year=2018 |title=Ancient DNA reveals the origins, colonization histories, and evolutionary pathways of two recently extinct species of giant scops owl from Mauritius and Rodrigues Islands (Mascarene Islands, south‐western Indian Ocean) |journal=Journal of Biogeography |volume=45 |issue=12 |pages=2678–2689 |doi=10.1111/jbi.13450 }}
304. ^{{Cite journal|author1=Ashley Kruger |author2=Shaw Badenhorst |year=2018 |title=Remains of a barn owl (Tyto alba) from the Dinaledi Chamber, Rising Star Cave, South Africa |journal=South African Journal of Science |volume=114 |issue=11/12 |pages=Art. #5152 |doi=10.17159/sajs.2018/5152 }}
305. ^{{cite journal |author=Gerald Mayr |year=2018 |title=New data on the anatomy and palaeobiology of sandcoleid mousebirds (Aves, Coliiformes) from the early Eocene of Messel |journal=Palaeobiodiversity and Palaeoenvironments |volume=98 |issue=4 |pages=639–651 |doi=10.1007/s12549-018-0328-1 }}
306. ^{{cite journal |author1=Gerald Mayr |author2=Stig A. Walsh |year=2018 |title=Exceptionally well-preserved early Eocene fossil reveals cranial and vertebral features of a stem group roller (Aves: Coraciiformes) |journal=PalZ |volume=92 |issue=4 |pages=715–726 |doi=10.1007/s12542-018-0424-6 }}
307. ^{{cite journal |author1=Washington Jones |author2=Andrés Rinderknecht |author3=Herculano Alvarenga |author4=Felipe Montenegro |author5=Martín Ubilla |year=2018 |title=The last terror birds (Aves, Phorusrhacidae): new evidence from the late Pleistocene of Uruguay |journal=PalZ |volume=92 |issue=2 |pages=365–372 |doi=10.1007/s12542-017-0388-y }}
308. ^{{cite journal |author1=Ulf S. Johansson |author2=Per G. P. Ericson |author3=Mozes P. K. Blom |author4=Martin Irestedt |year=2018 |title=The phylogenetic position of the extinct Cuban Macaw Ara tricolor based on complete mitochondrial genome sequences |journal=Ibis |volume=160 |issue=3 |pages=666–672 |doi=10.1111/ibi.12591 }}
309. ^{{Cite journal|author1=Richard J. George |author2=Stephen Plog |author3=Adam S. Watson |author4=Kari L. Schmidt |author5=Brendan J. Culleton |author6=Thomas K. Harper |author7=Patricia A. Gilman |author8=Steven A. LeBlanc |author9=George Amato |author10=Peter Whiteley |author11=Logan Kistler |author12=Douglas J. Kennett |year=2018 |title=Archaeogenomic evidence from the southwestern US points to a Pre-Hispanic scarlet macaw breeding colony |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=35 |pages=8740–8745 |doi=10.1073/pnas.1805856115 |pmid=30104352 |pmc=6126748 }}
310. ^{{cite journal |author1=Kari A. Prassack |author2=Michael C. Pante |author3=Jackson K. Njau |author4=Ignacio de la Torre |year=2018 |title=The paleoecology of Pleistocene birds from Middle Bed II, at Olduvai Gorge, Tanzania, and the environmental context of the Oldowan-Acheulean transition |journal=Journal of Human Evolution |volume=120 |pages=32–47 |doi=10.1016/j.jhevol.2017.11.003 |pmid=29458978 }}
311. ^{{cite journal |author1=Lisa Carrera |author2=Marco Pavia |author3=Matteo Romandini |author4=Marco Peresani |year=2018 |title=Avian fossil assemblages at the onset of the LGM in the eastern Alps: A palaecological contribution from the Rio Secco Cave (Italy) |journal=Comptes Rendus Palevol |volume=17 |issue=3 |pages=166–177 |doi=10.1016/j.crpv.2017.10.006 }}
312. ^{{cite journal |author1=Jessica A. Oswald |author2=David W. Steadman |year=2018 |title=The late Quaternary bird community of New Providence, Bahamas |journal=The Auk |volume=135 |issue=2 |pages=359–377 |doi=10.1642/AUK-17-185.1 }}
313. ^{{cite journal |author1=Julian P. Hume |author2=David Martill |author3=Richard Hing |year=2018 |title=A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles |journal=PLoS ONE |volume=13 |issue=3 |pages=e0192675 |doi=10.1371/journal.pone.0192675 |pmid=29590117 |pmc=5873930 }}
314. ^{{cite journal |author1=Junya Watanabe |author2=Hiroshige Matsuoka |author3=Yoshikazu Hasegawa |year=2018 |title=Pleistocene non-passeriform landbirds from Shiriya, northeast Japan |journal=Acta Palaeontologica Polonica |volume=63 |issue=3 |pages=469–491 |doi=10.4202/app.00509.2018 }}
315. ^{{Cite journal|author1=Lisa Carrera |author2=Marco Pavia |author3=Marco Peresani |author4=Matteo Romandini |year=2018 |title=Late Pleistocene fossil birds from Buso Doppio del Broion Cave (North-Eastern Italy): implications for palaeoecology, palaeoenvironment and palaeoclimate |journal=Bollettino della Società Paleontologica Italiana |volume=57 |issue=2 |pages=145–174 |doi=10.4435/BSPI.2018.10 |url=http://paleoitalia.org/archives/bollettino-spi/100/vol-57-2-2018/ }}
316. ^{{Cite journal|author1=Daniel R. Lawver |author2=Clint A. Boyd |year=2018 |title=An avian eggshell from the Brule Formation (Oligocene) of North Dakota |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(9) |doi=10.1080/02724634.2018.1486848 }}
317. ^{{Cite journal|author1=Cécile Mourer‑Chauviré |author2=Marie‑Françoise Bonifay |year=2018 |title=The birds from the Early Pleistocene of Ceyssaguet (Lavoûte‑sur‑Loire, Haute‑Loire, France): description of a new species of the genus Aquila |journal=Quaternaire |volume=29 |issue=3 |pages=183–194 }}
318. ^{{Cite journal|author1=Alan J.D. Tennyson |author2=Al A. Mannering |year=2018 |title=A new species of Pliocene shearwater (Aves: Procellariidae) from New Zealand |journal=Tuhinga: Records of the Museum of New Zealand |volume=29 |pages=1–19 |url=https://www.tepapa.govt.nz/sites/default/files/tuhinga29_1-shearwater.pdf }}
319. ^{{Cite journal|author1=Nikita V. Zelenkov |author2=Thomas A. Stidham |author3=Nicolay V. Martynovich |author4=Natalia V. Volkova |author5=Qiang Li |author6=Zhuding Qiu |year=2018 |title=The middle Miocene duck Chenoanas (Aves, Anatidae): new species, phylogeny and geographical range |journal=Papers in Palaeontology |volume=4 |issue=3 |pages=309–326 |doi=10.1002/spp2.1107 }}
320. ^{{Cite journal|author1=Jacqueline M.T. Nguyen |author2=Michael Archer |author3=Suzanne J. Hand |year=2018 |title=Quail-thrush birds from the Miocene of northern Australia |journal=Acta Palaeontologica Polonica |volume=63 |issue=3 |pages=493–502 |doi=10.4202/app.00485.2018 }}
321. ^{{Cite journal|author1=Stanislas Rigal |author2=Patrick V. Kirch |author3=Trevor H. Worthy |year=2018 |title=New prehistoric avifaunas from the Gambier Group, French Polynesia |journal=Palaeontologia Electronica |volume=21 |issue=3 |pages=Article number 21.3.43 |doi=10.26879/892 }}
322. ^{{Cite journal|author1=Xiaoting Zheng |author2=Jingmai K. O'Connor |author3=Xiaoli Wang |author4=Yan Wang |author5=Zhonghe Zhou |year=2018 |title=Reinterpretation of a previously described Jehol bird clarifies early trophic evolution in the Ornithuromorpha |journal=Proceedings of the Royal Society B: Biological Sciences |volume=285 |issue=1871 |pages=20172494 |doi=10.1098/rspb.2017.2494 |pmid=29386367 |pmc=5805944 }}
323. ^{{Cite journal|author1=Jessie Atterholt |author2=J. Howard Hutchison |author3=Jingmai K. O’Connor |year=2018 |title=The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae |journal=PeerJ |volume=6 |pages=e5910 |doi=10.7717/peerj.5910 |pmid=30479894 |pmc=6238772 }}
324. ^{{Cite journal|author1=Min Wang |author2=Thomas A. Stidham |author3=Zhonghe Zhou |year=2018 |title=A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=115 |issue=42 |pages=10708–10713 |doi=10.1073/pnas.1812176115 |pmid=30249638 |pmc=6196491 }}
325. ^{{Cite journal|author1=Natalia V. Volkova |author2=Nikita V. Zelenkov |year=2018 |title=A scansorial passerine bird (Passeriformes, Certhioidea) from the uppermost Lower Miocene of Eastern Siberia |journal=Paleontological Journal |volume=52 |issue=1 |pages=58–65 |doi=10.1134/S0031030118010148 |url=https://elibrary.ru/item.asp?id=32290537 }}
326. ^{{Cite journal|author1=Ellen K. Mather |author2=Alan J. D. Tennyson |author3=R. Paul Scofield |author4=Vanesa L. De Pietri |author5=Suzanne J. Hand |author6=Michael Archer |author7=Warren D. Handley |author8=Trevor H. Worthy |year=2018 |title=Flightless rails (Aves: Rallidae) from the early Miocene St Bathans Fauna, Otago, New Zealand |journal=Journal of Systematic Palaeontology |volume=17 |issue=5 |pages=423–449 |doi=10.1080/14772019.2018.1432710 }}
327. ^{{Cite journal|author1=Gerald Mayr |author2=Vanesa L. De Pietri |author3=Leigh Love |author4=Al A. Mannering |author5=R. Paul Scofield |year=2018 |title=A well-preserved new mid-Paleocene penguin (Aves, Sphenisciformes) from the Waipara Greensand in New Zealand |journal=Journal of Vertebrate Paleontology |volume=37 |issue=6 |pages=e1398169 |doi=10.1080/02724634.2017.1398169 }}
328. ^{{Cite journal|author=Jenő (Eugen) Kessler |year=2018 |title=Evolution and presence of diurnal predatory birds in the Carpathian Basin |journal=Ornis Hungarica |volume=26 |issue=1 |pages=102–123 |doi=10.1515/orhu-2018-0008 }}
329. ^{{Cite journal|author1=Zhiheng Li |author2=Julia A. Clarke |author3=Chad M. Eliason |author4=Thomas A. Stidham |author5=Tao Deng |author6=Zhonghe Zhou |year=2018 |title=Vocal specialization through tracheal elongation in an extinct Miocene pheasant from China |journal=Scientific Reports |volume=8 |pages=Article number 8099 |doi=10.1038/s41598-018-26178-x |pmid=29802379 |pmc=5970207 }}
330. ^{{Cite journal|author1=Oona M. Takano |author2=David W. Steadman |year=2018 |title=Another new species of flightless Rail (Aves: Rallidae: Rallus) from Abaco, The Bahamas |journal=Zootaxa |volume=4407 |issue=3 |pages=376–382 |doi=10.11646/zootaxa.4407.3.5 |pmid=29690183 }}
331. ^{{Cite journal|author=N. V. Zelenkov |year=2018 |title=The earliest Asian duck (Anseriformes: Romainvilla) and the origin of Anatidae |journal=Doklady Biological Sciences |volume=483 |pages=225–227 |doi=10.1134/S0012496618060030 |pmid=30603943 |url=https://www.researchgate.net/publication/329801984_The_Earliest_Asian_Duck_Anseriformes_Romainvilla_and_the_Origin_of_Anatidae }}
332. ^{{Cite journal|author1=Hiroshige Matsuoka |author2=Yoshikazu Hasegawa |year=2018 |title=Birds around the Minatogawa Man: the Late Pleistocene avian fossil assemblage of the Minatogawa Fissure, southern part of Okinawa Island, Central Ryukyu Islands, Japan |journal=Bulletin of Gunma Museum of Natural History |volume=22 |pages=1–21 |url=http://www.gmnh.pref.gunma.jp/wp-content/uploads/bulletin22_1.pdf }}
333. ^{{Cite journal|author1=Vanesa L. De Pietri |author2=R. Paul Scofield |author3=Gavin J. Prideaux |author4=Trevor H. Worthy |year=2018 |title=A new species of lapwing (Charadriidae: Vanellus) from the late Pliocene of central Australia |journal=Emu - Austral Ornithology |volume=118 |issue=4 |pages=334–343 |doi=10.1080/01584197.2018.1464373 }}
334. ^{{Cite journal|author1=James P. Hansford |author2=Samuel T. Turvey |year=2018 |title=Unexpected diversity within the extinct elephant birds (Aves: Aepyornithidae) and a new identity for the world's largest bird |journal=Royal Society Open Science |volume=5 |issue=9 |pages=181295 |doi=10.1098/rsos.181295 |pmid=30839722 |pmc=6170582 }}
335. ^{{Cite journal|author1=Zbigniew M. Bocheński |author2=Teresa Tomek |author3=Krzysztof Wertz |author4=Johannes Happ |author5=Małgorzata Bujoczek |author6=Ewa Świdnicka |year=2018 |title=Articulated avian remains from the early Oligocene of Poland adds to our understanding of Passerine evolution |journal=Palaeontologia Electronica |volume=21 |issue=2 |pages=Article number 21.2.32A |doi=10.26879/843 }}
336. ^{{cite journal |author1=Min Wang |author2=Zhonghe Zhou |year=2018 |title=A new confuciusornithid (Aves: Pygostylia) from the Early Cretaceous increases the morphological disparity of the Confuciusornithidae |journal=Zoological Journal of the Linnean Society |volume=185 |issue=2 |pages=417–430 |doi=10.1093/zoolinnean/zly045 }}
337. ^{{Cite journal|author1=N. Adam Smith |author2=Aj M. DeBee |author3=Julia A. Clarke |year=2018 |title=Systematics and phylogeny of the Zygodactylidae (Aves, Neognathae) with description of a new species from the early Eocene of Wyoming, USA |journal=PeerJ |volume=6 |pages=e4950 |doi=10.7717/peerj.4950 |pmid=29967716 |pmc=6022727 }}
338. ^{{Cite journal|author1=Charlie A. Navarro |author2=Elizabeth Martin-Silverstone |author3=Thomas L. Stubbs |year=2018 |title=Morphometric assessment of pterosaur jaw disparity |journal=Royal Society Open Science |volume=5 |issue=4 |pages=172130 |doi=10.1098/rsos.172130 |pmid=29765665 |pmc=5936930 }}
339. ^{{Cite journal|author1=Jordan Bestwick |author2=David M. Unwin |author3=Richard J. Butler |author4=Donald M. Henderson |author5=Mark A. Purnell |year=2018 |title=Pterosaur dietary hypotheses: a review of ideas and approaches |journal=Biological Reviews |volume=93 |issue=4 |pages=2021–2048 |doi=10.1111/brv.12431 |pmid=29877021 }}
340. ^{{Cite journal|author =Alexander W.A. Kellner |year=2015 |title=Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa |journal=Anais da Academia Brasileira de Ciências |volume=87 |issue=2 |pages=669–689 |doi=10.1590/0001-3765201520150307 |pmid=26131631 }}
341. ^{{Cite journal|author=Fabio M. Dalla Vecchia |year=2018 |title=Comments on Triassic pterosaurs with a commentary on the "ontogenetic stages" of Kellner (2015) and the validity of Bergamodactylus wildi |journal=Rivista Italiana di Paleontologia e Stratigrafia |volume=124 |issue=2 |pages=317–341 |doi=10.13130/2039-4942/10099 }}
342. ^{{cite book |author1=David M. Unwin |author2=David M. Martill |year=2018 |chapter=Systematic reassessment of the first Jurassic pterosaur from Thailand |editor1=D. W. E. Hone |editor2=M. P. Witton |editor3=D. M. Martill |title=New Perspectives on Pterosaur Palaeobiology |publisher=The Geological Society of London |volume= |pages=181–186 |isbn=978-1-78620-317-5 |doi=10.1144/SP455.13 }}
343. ^{{Cite journal|author1=Kai R.K. Jäger |author2=Helmut Tischlinger |author3=Georg Oleschinski |author4=P. Martin Sander |year=2018 |title=Goldfuß was right: Soft part preservation in the Late Jurassic pterosaur Scaphognathus crassirostris revealed by reflectance transformation imaging (RTI) and UV light and the auspicious beginnings of paleo-art |journal=Palaeontologia Electronica |volume=21 |issue=3 |pages=Article number 21.3.4T |doi=10.26879/713 }}
344. ^{{Cite journal|author1=David M. Martill |author2=Nizar Ibrahim |author3=Samir Bouaziz |year=2018 |title=A giant pterosaur in the Early Cretaceous (Albian) of Tunisia |journal=Journal of African Earth Sciences |volume=147 |pages=331–337 |doi=10.1016/j.jafrearsci.2018.05.008 }}
345. ^{{Cite journal|author=S. Christopher Bennett |year=2018 |title=New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs |journal=Journal of Paleontology |volume=92 |issue=2 |pages=254–271 |doi=10.1017/jpa.2017.84 }}
346. ^{{Cite journal|author1=Dana J. Ehret |author2=T. Lynn Harrell, Jr. |year=2018 |title=Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA |journal=Palaios |volume=33 |issue=9 |pages=414–418 |doi=10.2110/palo.2018.024 }}
347. ^{{Cite journal|author1=David W.E. Hone |author2=Mark P. Witton |author3=Michael B. Habib |year=2018 |title=Evidence for the Cretaceous shark Cretoxyrhina mantelli feeding on the pterosaur Pteranodon from the Niobrara Formation |journal=PeerJ |volume=6 |pages=e6031 |doi=10.7717/peerj.6031 |pmid=30581660 |pmc=6296329 }}
348. ^{{Cite journal|author1=Leonardo D. Ortiz David |author2=Bernardo J. González Riga |author3=Alexander W.A. Kellner |year=2018 |title=Discovery of the largest pterosaur from South America |journal=Cretaceous Research |volume=83 |pages=40–46 |doi=10.1016/j.cretres.2017.10.004 }}
349. ^{{cite book |author1=D. W. E. Hone |author2=S. Jiang |author3=X. Xu |year=2018 |chapter=A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae |editor1=D. W. E. Hone |editor2=M. P. Witton |editor3=D. M. Martill |title=New Perspectives on Pterosaur Palaeobiology |publisher=The Geological Society of London |volume= |pages=149–157 |isbn=978-1-78620-317-5 |doi=10.1144/SP455.8 }}
350. ^{{Cite journal|author1=Richard Buchmann |author2=Taissa Rodrigues |author3=Sabrina Polegario |author4=Alexander W.A. Kellner |year=2018 |title=New information on the postcranial skeleton of the Thalassodrominae (Pterosauria, Pterodactyloidea, Tapejaridae) |journal=Historical Biology: An International Journal of Paleobiology |volume=30 |issue=8 |pages=1139–1149 |doi=10.1080/08912963.2017.1343314 }}
351. ^{{Cite journal|author1=Rodrigo V. Pêgas |author2=Fabiana R. Costa |author3=Alexander W.A. Kellner |year=2018 |title=New information on the osteology and a taxonomic revision of the genus Thalassodromeus (Pterodactyloidea, Tapejaridae, Thalassodrominae) |journal=Journal of Vertebrate Paleontology |volume=38 |issue=2 |pages=e1443273 |doi=10.1080/02724634.2018.1443273 }}
352. ^{{cite journal |author1=Gregory F. Funston |author2=Elizabeth Martin-Silverstone |author3=Philip J. Currie |year=2017 |title=The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion |journal=FACETS |volume=2 |pages=559–574 |doi=10.1139/facets-2016-0067 }}
353. ^{{cite journal |author1=Gregory F. Funston |author2=Elizabeth Martin-Silverstone |author3=Philip J. Currie |year=2018 |title=Correction: The first pterosaur pelvic material from the Dinosaur Park Formation (Campanian) and implications for azhdarchid locomotion |journal=FACETS |volume=3 |pages=192–194 |doi=10.1139/facets-2018-0006 }}
354. ^{{Cite journal|author1=Mátyás Vremir |author2=Gareth Dyke |author3=Zoltán Csiki‐Sava |author4=Dan Grigorescu |author5=Eric Buffetaut |year=2018 |title=Partial mandible of a giant pterosaur from the uppermost Cretaceous (Maastrichtian) of the Hațeg Basin, Romania |journal=Lethaia |volume=51 |issue=4 |pages=493–503 |doi=10.1111/let.12268 }}
355. ^{{cite journal |author1=Nicholas R. Longrich |author2=David M. Martill |author3=Brian Andres |year=2018 |title=Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary |journal=PLOS Biology |volume=16 |issue=3 |pages=e2001663 |doi=10.1371/journal.pbio.2001663 |pmid=29534059 |pmc=5849296 }}
356. ^{{cite journal |author1=Brooks B. Britt |author2=Fabio M. Dalla Vecchia |author3=Daniel J. Chure |author4=George F. Engelmann |author5=Michael F. Whiting |author6=Rodney D. Scheetz |year=2018 |title=Caelestiventus hanseni gen. et sp. nov. extends the desert-dwelling pterosaur record back 65 million years |journal=Nature Ecology & Evolution |volume=2 |issue=9 |pages=1386–1392 |doi=10.1038/s41559-018-0627-y |pmid=30104753 }}
357. ^{{cite journal |author1=Michael O’Sullivan |author2=David M. Martill |year=2018 |title=Pterosauria of the Great Oolite Group (Bathonian, Middle Jurassic) of Oxfordshire and Gloucestershire, England |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=617–644 |doi=10.4202/app.00490.2018 }}
358. ^{{cite journal |author1=Romain Vullo |author2=Géraldine Garcia |author3=Pascal Godefroit |author4=Aude Cincotta |author5=Xavier Valentin |year=2018 |title=Mistralazhdarcho maggii, gen. et sp. nov., a new azhdarchid pterosaur from the Upper Cretaceous of southeastern France |journal=Journal of Vertebrate Paleontology |volume=38 |issue=4 |pages=(1)–(16) |doi=10.1080/02724634.2018.1502670 }}
359. ^{{cite book |author1=Stanislas Rigal |author2=David M. Martill |author3=Steven C. Sweetman |year=2018 |chapter=A new pterosaur specimen from the Upper Tunbridge Wells Sand Formation (Cretaceous, Valanginian) of southern England and a review of Lonchodectes sagittirostris (Owen 1874) |editor1=D. W. E. Hone |editor2=M. P. Witton |editor3=D. M. Martill |title=New Perspectives on Pterosaur Palaeobiology |publisher=The Geological Society of London |volume= |pages=221–232 |isbn=978-1-78620-317-5 |doi=10.1144/SP455.5 }}
360. ^{{cite book |author1=Junchang Lü |author2=Qingjin Meng |author3=Baopeng Wang |author4=Di Liu |author5=Caizhi Shen |author6=Yuguang Zhang |year=2018 |chapter=Short note on a new anurognathid pterosaur with evidence of perching behaviour from Jianchang of Liaoning Province, China |editor1=D. W. E. Hone |editor2=M. P. Witton |editor3=D. M. Martill |title=New Perspectives on Pterosaur Palaeobiology |publisher=The Geological Society of London |volume= |pages=95–104 |isbn=978-1-78620-317-5 |doi=10.1144/SP455.16 }}
361. ^{{cite journal |author1=David M. Martill |author2=David M. Unwin |author3=Nizar Ibrahim |author4=Nick Longrich |year=2018 |title=A new edentulous pterosaur from the Cretaceous Kem Kem beds of south eastern Morocco |journal=Cretaceous Research |volume=84 |pages=1–12 |doi=10.1016/j.cretres.2017.09.006 }}
362. ^{{cite journal |author1=Sterling J. Nesbitt |author2=Richard J. Butler |author3=Martín D. Ezcurra |author4=Alan J. Charig |author5=Paul M. Barrett |year=2018 |title=The anatomy of Teleocrater rhadinus, an early avemetatarsalian from the lower portion of the Lifua Member of the Manda Beds (Middle Triassic) |journal=Journal of Vertebrate Paleontology |volume=37 |issue=Supplement to No. 6 |pages=142–177 |doi=10.1080/02724634.2017.1396539 }}
363. ^{{Cite journal|author1=Rodrigo Temp Müller |author2=Max Cardoso Langer |author3=Sérgio Dias-da-Silva |year=2018 |title=Ingroup relationships of Lagerpetidae (Avemetatarsalia: Dinosauromorpha): a further phylogenetic investigation on the understanding of dinosaur relatives |journal=Zootaxa |volume=4392 |issue=1 |pages=149–158 |doi=10.11646/zootaxa.4392.1.7 |pmid=29690420 }}
364. ^{{Cite journal|author=Adam D. Marsh |year=2018 |title=A new record of Dromomeron romeri Irmis et al., 2007 (Lagerpetidae) from the Chinle Formation of Arizona, U.S.A. |journal=PaleoBios |volume=35 |pages=ucmp_paleobios_42075 |url=https://escholarship.org/uc/item/8w5755sg }}
365. ^{{Cite journal|author1=Federico L. Agnolín |author2=Sebastián Rozadilla |year=2018 |title=Phylogenetic reassessment of Pisanosaurus mertii Casamiquela, 1967, a basal dinosauriform from the Late Triassic of Argentina |journal=Journal of Systematic Palaeontology |volume=16 |issue=10 |pages=853–879 |doi=10.1080/14772019.2017.1352623 }}
366. ^{{cite journal |author1=Matthew G. Baron |author2=Megan E. Williams |year=2018 |title=A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution |journal=Acta Palaeontologica Polonica |volume=63 |issue=1 |pages=129–145 |doi=10.4202/app.00372.2017 }}
367. ^{{cite journal |author1=Grzegorz Niedźwiedzki |author2=Ewa Budziszewska-Karwowska |year=2018 |title=A new occurrence of the Late Triassic archosaur Smok in southern Poland |journal=Acta Palaeontologica Polonica |volume=63 |issue=4 |pages=703–712 |doi=10.4202/app.00505.2018 }}
368. ^{{Cite journal|author1=Volkan Sarıgül |author2=Federico Agnolín |author3=Sankar Chatterjee |year=2018 |title=Description of a multitaxic bone assemblage from the Upper Triassic Post Quarry of Texas (Dockum group), including a new small basal dinosauriform taxon |url=http://fundacionazara.org.ar/img/revista-historia-natural/tomo-15/VolkanSarigul-5-24-ok.pdf |journal=Historia Natural, Tercera Serie |volume=8 |issue=1 |pages=5–24 }}

3 : 2018 in paleontology|Archosaurs|2018-related lists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 11:01:18