词条 | Block floating point |
释义 |
The common exponent is found by data with the largest amplitude in the block. To find the value of the exponent, the number of leading bits must be found. For this to be done, the number of left shifts needed for the data must be normalized to the dynamic range of the processor used. Some processors have means to find this out themselves, such as exponent detection and normalization instructions.[2][3] Block floating-point algorithms were extensively studied by James Hardy Wilkinson.[4][5][6] A similar arithmetic can be used on top of a floating-point format having a limited range. See also
References1. ^1 {{cite web |author-first1=Arun |author-last1=Chhabra |author-first2=Ramesh |author-last2=Iyer |title=TMS320C55x A Block Floating Point Implementation on the TMS320C54x DSP |series=Digital Signal Processing Solutions |publisher=Texas Instruments |date=December 1999 |type=Application report |id=SPRA610 |url=http://www.eeng.dcu.ie/~ee206/pdf/block_flt_pt.pdf |access-date=2018-07-11 |dead-url=no |archive-url=https://web.archive.org/web/20180711175625/http://www.eeng.dcu.ie/~ee206/pdf/block_flt_pt.pdf |archive-date=2018-07-11}} [1][2][3][4][5]2. ^1 {{cite web |author-first1=David |author-last1=Elam |author-first2=Cesar |author-last2=Iovescu |title=A Block Floating Point Implementation for an N-Point FFT on the TMS320C55x DSP |series=TMS320C5000 Software Applications |publisher=Texas Instruments |date=September 2003|type=Application report |id=SPRA948 |url=http://www.ti.com/lit/an/spra948/spra948.pdf |access-date=2015-11-01 |dead-url=no |archive-url=https://web.archive.org/web/20180711174823/http://www.ti.com/lit/an/spra948/spra948.pdf |archive-date=2018-07-11}} 3. ^1 {{cite book |author-first=James Hardy |author-last=Wilkinson |author-link=James Hardy Wilkinson |title=Rounding Errors in Algebraic Processes |date=1963 |publisher=Prentice-Hall, Inc. |location=Englewood Cliffs, NJ, USA |edition=1 |mr=161456 |url=https://books.google.com/books?id=yFogU9Ot-qsC}} 4. ^1 {{cite book |author-last1=Muller |author-first1=Jean-Michel |author-last2=Brisebarre |author-first2=Nicolas |author-last3=de Dinechin |author-first3=Florent |author-last4=Jeannerod |author-first4=Claude-Pierre |author-last5=Lefèvre |author-first5=Vincent |author-last6=Melquiond |author-first6=Guillaume |author-last7=Revol |author-first7=Nathalie |author-last8=Stehlé |author-first8=Damien |author-last9=Torres |author-first9=Serge |title=Handbook of Floating-Point Arithmetic |date=2010 |publisher=Birkhäuser |edition=1 |isbn=978-0-8176-4704-9 |doi=10.1007/978-0-8176-4705-6 |lccn=2009939668}} 5. ^1 {{cite book |title=Numerical Computing with IEEE Floating Point Arithmetic - Including One Theorem, One Rule of Thumb and One Hundred and One Exercises |author-first=Michael L. |author-last=Overton |date=2001 |publisher=Society for Industrial and Applied Mathematics (SIAM) |isbn=0-89871-482-6 |id=9-780898-714821-90000 |edition=1}} }} Further reading
2 : Floating point|Computer arithmetic |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。