释义 |
- Cartesian coordinates
- Related polytopes and honeycombs
- Images
- References
- External links
Demiocteract (8-demicube) | Petrie polygon projection | Type | Uniform 8-polytope | Family | demihypercube | Coxeter symbol | 151 | Schläfli symbols | {3,35,1} = h{4,36} s{21,1,1,1,1,1,1} | Coxeter diagrams | nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}} {{CDD|node_h|2x|node_h|4|node|3|node|3|node|3|node|3|node|}} {{CDD|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|3|node|3|node|}} {{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|3|node|}} {{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|}} {{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|}} {{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|}} {{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h}} | 7-faces | 144: 16 {31,4,1} 128 {36} | 6-faces | 112 {31,3,1} 1024 {35} | 5-faces | 448 {31,2,1} 3584 {34} | 4-faces | 1120 {31,1,1} 7168 {3,3,3} | Cells | 10752: 1792 {31,0,1} 8960 {3,3} | Faces | 7168 {3} | Edges | 1792 | Vertices | 128 | Vertex figure | Rectified 7-simplex
| Symmetry group | D8, [35,1,1] = [1+,4,36] A18, [27]+ | Dual | ? | Properties | convex |
In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM8 for an 8-dimensional half measure polytope. Coxeter named this polytope as 151 from its Coxeter diagram, with a ring on one of the 1-length branches, {{CDD|node_1|3|node|split1|nodes|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} and Schläfli symbol or {3,35,1}. Cartesian coordinates Cartesian coordinates for the vertices of an 8-demicube centered at the origin are alternate halves of the 8-cube: (±1,±1,±1,±1,±1,±1,±1,±1) with an odd number of plus signs. Related polytopes and honeycombsThis polytope is the vertex figure for the uniform tessellation, 251 with Coxeter-Dynkin diagram: {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} Images {{8-demicube Coxeter plane graphs|t0|100}} References - H.S.M. Coxeter:
- Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}}, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 26. pp. 409: Hemicubes: 1n1)
External links - {{GlossaryForHyperspace | anchor=half | title=Demiocteract }}
- Multi-dimensional Glossary
{{Polytopes}} 1 : 8-polytopes |