请输入您要查询的百科知识:

 

词条 8-demicube
释义

  1. Cartesian coordinates

  2. Related polytopes and honeycombs

  3. Images

  4. References

  5. External links

Demiocteract
(8-demicube)

Petrie polygon projection
TypeUniform 8-polytope
Familydemihypercube
Coxeter symbol 151
Schläfli symbols{3,35,1} = h{4,36}
s{21,1,1,1,1,1,1}
Coxeter diagramsnodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|node_h|2x|node_h|4|node|3|node|3|node|3|node|3|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|3|node|3|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|3|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|3|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|3|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|4|node|}}
{{CDD|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h|2x|node_h}}
7-faces144:
16 {31,4,1}
128 {36}
6-faces112 {31,3,1}
1024 {35}
5-faces448 {31,2,1}
3584 {34}
4-faces1120 {31,1,1}
7168 {3,3,3}
Cells10752:
1792 {31,0,1}
8960 {3,3}
Faces7168 {3}
Edges1792
Vertices128
Vertex figureRectified 7-simplex
Symmetry groupD8, [35,1,1] = [1+,4,36]
A18, [27]+
Dual?
Propertiesconvex

In geometry, a demiocteract or 8-demicube is a uniform 8-polytope, constructed from the 8-hypercube, octeract, with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM8 for an 8-dimensional half measure polytope.

Coxeter named this polytope as 151 from its Coxeter diagram, with a ring on

one of the 1-length branches, {{CDD|node_1|3|node|split1|nodes|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} and Schläfli symbol or {3,35,1}.

Cartesian coordinates

Cartesian coordinates for the vertices of an 8-demicube centered at the origin are alternate halves of the 8-cube:

(±1,±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Related polytopes and honeycombs

This polytope is the vertex figure for the uniform tessellation, 251 with Coxeter-Dynkin diagram:

{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

Images

{{8-demicube Coxeter plane graphs|t0|100}}

References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, {{ISBN|0-486-61480-8}}, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p. 296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}  
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 26. pp. 409: Hemicubes: 1n1)

External links

  • {{GlossaryForHyperspace | anchor=half | title=Demiocteract }}
  • Multi-dimensional Glossary
{{Polytopes}}

1 : 8-polytopes

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 17:27:40