词条 | Bilateria |
释义 |
| name = Bilaterians | fossil_range = Ediacaran–Present, {{fossil range|560|0|refs=[1]}} | image = Animal_diversity_October_2007.jpg | image_caption = Diversity of bilaterians. | taxon = Bilateria | regnum = Animalia | subregnum = Eumetazoa | unranked_superphylum = ParaHoxozoa | unranked_subphylum = Bilateria | authority = Hatschek, 1888 | subdivision_ranks = Phyla | subdivision = * Proarticulata †
| synonyms = Triploblasts Lankester, 1873 }} The bilateria {{IPAc-en|ˌ|b|aɪ|l|ə|ˈ|t|ɪər|i|ə}}, bilaterians, or triploblasts, are animals with bilateral symmetry, i.e., they have a head (anterior) and a tail (posterior) as well as a back (dorsal) and a belly (ventral); therefore they also have a left side and a right side.[2] The bilateria are a major group of animals, including the majority of phyla but not sponges, ctenophores, placozoans, and cnidarians. For the most part, bilateral embryos are triploblastic, having three germ layers: endoderm, mesoderm, and ectoderm. Nearly all are bilaterally symmetrical, or approximately so; the most notable exception is the echinoderms, which achieve near-radial symmetry as adults, but are bilaterally symmetrical as larvae. Except for a few phyla (i.e. flatworms and gnathostomulids), bilaterians have complete digestive tracts with a separate mouth and anus. Some bilaterians lack body cavities (acoelomates, i.e. Platyhelminthes, Gastrotricha and Gnathostomulida), while others display primary body cavities (deriving from the blastocoel, as pseudocoeloms) or secondary cavities (that appear de novo, for example the coelom).[3][4] Body planSome of the earliest bilaterians were wormlike, and a bilaterian body can be conceptualized as a cylinder with a gut running between two openings, the mouth and the anus. Around the gut it has an internal body cavity, a coelom or pseudocoelom.{{efn|The earliest Bilateria may have had only a single opening, and no coelom.[5]}} Animals with this bilaterally symmetric body plan have a head (anterior) end and a tail (posterior) end as well as a back (dorsal) and a belly (ventral); therefore they also have a left side and a right side.[6][7] Having a front end means that this part of the body encounters stimuli, such as food, favouring cephalisation, the development of a head with sense organs and a mouth.[5] The body stretches back from the head, and many bilaterians have a combination of circular muscles that constrict the body, making it longer, and an opposing set of longitudinal muscles, that shorten the body;[7] these enable soft-bodied animals with a hydrostatic skeleton to move by peristalsis.[6] They also have a gut that extends through the basically cylindrical body from mouth to anus. Many bilaterian phyla have primary larvae which swim with cilia and have an apical organ containing sensory cells. However, there are exceptions to each of these characteristics; for example, adult echinoderms are radially symmetric (unlike their larvae), and certain parasitic worms have extremely simplified body structures.[7][8] EvolutionThe hypothetical most recent common ancestor of all bilateria is termed the "Urbilaterian".[9][10] The nature of the first bilaterian is a matter of debate. One side suggests that acoelomates gave rise to the other groups (planuloid-aceloid hypothesis by Ludwig von Graff, Elie Metchnikoff, Libbie Hyman, or {{ill|Luitfried von Salvini-Plawen|nl}}), while the other poses that the first bilaterian was a coelomate organism and the main acoelomate phyla (flatworms and gastrotrichs) have lost body cavities secondarily (the Archicoelomata hypothesis and its variations such as the Gastrea by Haeckel or Sedgwick, the Bilaterosgastrea by {{Interlanguage link|Gösta Jägersten|sv}}, or the Trochaea by Nielsen). The first evidence of bilateria in the fossil record comes from trace fossils in Ediacaran sediments, and the first bona fide bilaterian fossil is Kimberella, dating to {{Ma|555}}.[11] Earlier fossils are controversial; the fossil Vernanimalcula may be the earliest known bilaterian, but may also represent an infilled bubble.[12][13] Fossil embryos are known from around the time of Vernanimalcula ({{Ma|580}}), but none of these have bilaterian affinities.[14] Burrows believed to have been created by bilaterian life forms have been found in the Tacuarí Formation of Uruguay, and are believed to be at least 585 million years old.[15] Phylogeny{{See also|List of bilateral animal orders}}There are two main lineages, superphyla, of Bilateria. The deuterostomes include the echinoderms, hemichordates, chordates, and a few smaller phyla. The protostomes include most of the rest, such as arthropods, annelids, mollusks, flatworms, and so forth. There are a number of differences, most notably in how the embryo develops. In particular, the first opening of the embryo becomes the mouth in protostomes, and the anus in deuterostomes. Many taxonomists now recognize at least two more superphyla among the protostomes, Ecdysozoa[16] (molting animals) and Spiralia.[16][17][18][19] The arrow worms (Chaetognatha) have proven difficult to classify; recent studies place them in the gnathifera.[20][21][22] A modern (2011) consensus phylogenetic tree for Bilateria is shown below, although the positions of certain clades are still controversial (dashed lines) and the tree has changed considerably between 2000 and 2010.[23][22][24][25][26] It is indicated when approximately clades radiated into newer clades in millions of years ago (Mya).[27] {{clade| style=font-size:85%;line-height:85%|label1=Planulozoa |sublabel1=680 mya |1={{clade |1=Cnidaria |label2=Bilateria |2={{clade |1=†Proarticulata |label2=Xenacoelomorpha |2={{clade |1=Xenoturbellida |label2=Acoelomorpha |2={{clade |1=Nemertodermatida |2=Acoela }} }} |label3=Nephrozoa |sublabel3=650 mya |3={{clade |label1=Deuterostomia |1={{clade |label1=Chordata |1={{clade |1=Cephalochordata |label2=Olfactores |2={{clade |1=Urochordata |2=Craniata/Vertebrata }} }} |3={{clade |1=†Saccorhytus coronarius |2={{clade |1=†Vetulocystids |2=†Vetulicolians }} }} |label2=Ambulacraria |2={{clade |1=Echinodermata |2=Hemichordata |state3=dashed |3=†Cambroernida }} }} |label2=Protostomia |sublabel2=610 mya |2={{clade |label1=Ecdysozoa|sublabel1=>529 mya |1={{clade |1={{clade |label1=Nematoida |1={{clade |1=Nematoda |2=Nematomorpha |2={{clade|state1=dashed |1=Loricifera |label2=Panarthropoda |2={{clade |1=Onychophora |label2=Tactopoda |2={{clade |1=Tardigrada |2=Arthropoda }} }} }} }} |label2=Scalidophora |2={{clade |1=Priapulida |2=Kinorhyncha }} }} |label2=Spiralia |2={{Clade |label1=Gnathifera |1={{Clade |1=Rotifera and allies |2=Chaetognatha |label2=Platytrochozoa |sublabel2=580 mya |2={{Clade |1=Platyhelminthes and allies |label2=Lophotrochozoa |sublabel2=550 mya |2={{Clade |1=Mollusca |2=Annelida and allies }} }} }} |3=†Kimberella }} }} }} }} }} Evolutionary originThe original bilaterian is hypothesized to have been a bottom dwelling worm with a single body opening.[28] It may have resembled the planula larvae of some cnidaria, which have some bilateral symmetry.[29] See also
Notes{{notelist}}References1. ^{{cite journal | last1 = Martin | first1 = M. W. | last2 = Grazhdankin | first2 = D. V | last3 = Bowring | first3 = S. A | last4 = Evans | first4 = D. A | last5 = Fedonkin | first5 = M. A | last6 = Kirschvink | first6 = J. L. | date = 5 May 2000 | title = Age of Neoproterozoic bilatarian [sic] body and trace fossils, White Sea, Russia: implications for metazoan evolution | journal = Science | volume = 288 | issue = 5467 | pages = 841–5 | doi=10.1126/science.288.5467.841 | pmid=10797002| bibcode = 2000Sci...288..841M }} 2. ^{{Cite book |url=http://www.sinauer.com/media/wysiwyg/samples/Brusca3e_Chapter_9.pdf |title=Introduction to the Bilateria and the Phylum Xenacoelomorpha {{!}} Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation |work=Invertebrates |last=Brusca |first=Richard C. |date=2016 |publisher=Sinauer Associates |pages=345–372 |isbn=978-1605353753}} 3. ^{{cite web | url=http://rcfilms.dotster.com/arribas_ABALO_JURASSIC_SEA_WORM.pdf |access-date=9 January 2017 | title= Probable ancestor of cephalochordates | publisher=PENICHEFOSSIL}} 4. ^{{cite web | url= https://www.youtube.com/watch?v=HfbyFm2eYaQ|access-date=9 January 2017 | title= Ediacaran fauna worms| publisher= Walter Jahn}} – [https://www.youtube.com/watch?v=HfbyFm2eYaQ Suny Orange] 5. ^{{cite journal | url=http://faculty.weber.edu/rmeyers/PDFs/Finnerty%20-%20symmetry%20evol.pdf | title=Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals? | author=Finnerty, John R. | journal=BioEssays | date=November 2005 | volume=27 | issue=11 | pages=1174–1180 | doi=10.1002/bies.20299 | pmid=16237677}} 6. ^{{cite journal |author=Quillin, K. J. |title=Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris |journal=The Journal of Experimental Biology |volume=201 |issue=12 |pages=1871–83 | date=May 1998 |pmid=9600869 |url=http://jeb.biologists.org/cgi/pmidlookup?view=long&pmid=9600869}} 7. ^1 {{cite book|author=Minelli, Alessandro |title=Perspectives in Animal Phylogeny and Evolution |url=https://books.google.com/books?id=jIASDAAAQBAJ&pg=PA53 |year=2009 |publisher=Oxford University Press |isbn=978-0-19-856620-5 |page=53}} 8. ^1 2 {{Cite book |url=http://www.sinauer.com/media/wysiwyg/samples/Brusca3e_Chapter_9.pdf |title=Introduction to the Bilateria and the Phylum Xenacoelomorpha {{!}} Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation |work=Invertebrates |last=Brusca |first=Richard C. |date=2016 |publisher=Sinauer Associates |pages=345–372 |isbn=978-1605353753}} 9. ^{{cite journal | last1 = Knoll | first1 = Andrew H. | last2 = Carroll | first2 = Sean B. | date = 25 June 1999 | title = Early Animal Evolution: Emerging Views from Comparative Biology and Geology | journal = Science | volume = 284 | issue = 5423 | pages = 2129–2137 | doi=10.1126/science.284.5423.2129 | pmid= 10381872}} 10. ^{{cite journal|last1=Balavoine|first1=G. |author2=Adoutte, Andre |title=The segmented Urbilateria: A testable scenario |journal=Integrative and Comparative Biology |date=2003 |volume=43 |issue=1 |pages=137–147 |doi=10.1093/icb/43.1.137}} 11. ^{{Cite journal | author=Fedonkin, M. A. |author2=Waggoner, B. M. |date=November 1997 | title=The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism | journal=Nature | volume=388 | issue=6645 | pages=868–871 | doi=10.1038/42242 | bibcode=1997Natur.388..868F}} 12. ^{{cite journal | author = Bengtson, S. |author2=Budd, G. | date = 19 November 2004 | title = Comment on 'small bilaterian fossils from 40 to 55 million years before the Cambrian'. | journal = Science | volume = 306 | pages = 1291a | doi = 10.1126/science.1101338 | pmid = 15550644 | issue = 5700 }} 13. ^{{cite journal | author = Bengtson, S. |author3=Cunningham, J. A. |author4=Yin, C. |author2=Donoghue, P. C. J. | year = 2012 | title = A merciful death for the 'earliest bilaterian,' Vernanimalcula | journal = Evolution & Development | volume = 14 |issue=5 | pages = 421–427 | doi = 10.1111/j.1525-142X.2012.00562.x | pmid = 22947315 |url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-597 }} 14. ^{{Cite journal | last1 = Hagadorn | first1 = J. W. | last2 = Xiao | first2 = S. | last3 = Donoghue | first3 = P. C. J. | last4 = Bengtson | first4 = S. | last5 = Gostling | first5 = N. J. | last6 = Pawlowska | first6 = M. | last7 = Raff | first7 = E. C. | last8 = Raff | first8 = R. A. | last9 = Turner | first9 = F. R. | last10 = Chongyu | doi = 10.1126/science.1133129 | first10 = Y. | last11 = Zhou | first11 = C. | last12 = Yuan | first12 = X. | last13 = McFeely | first13 = M. B. | last14 = Stampanoni | first14 = M. | last15 = Nealson | first15 = K. H. | title = Cellular and Subcellular Structure of Neoproterozoic Animal Embryos | journal = Science | volume = 314 | issue = 5797 | pages = 291–294 | date = 13 October 2006 | pmid = 17038620| pmc = |bibcode = 2006Sci...314..291H }} 15. ^{{cite journal | title=Bilaterian burrows and grazing behavior at >585 million years ago |last1=Pecoits|first1=E.|last2=Konhauser|first2=K. O.|last3=Aubet|first3=N. R.|last4=Heaman|first4=L. M.|last5=Veroslavsky|first5=G.|last6=Stern|first6=R. A.|last7=Gingras|first7=M. K. | journal=Science | volume=336 | issue=6089 | pages=1693–1696 | doi=10.1126/science.1216295 |pmid=22745427| date=June 29, 2012|bibcode=2012Sci...336.1693P}} 16. ^1 {{cite journal |last=Halanych |first=K. |author2=Bacheller, J. |author3=Aguinaldo, A. |author4=Liva, S. |author5=Hillis, D. |author6= Lake, J. |title=Evidence from 18S ribosomal DNA that the lophophorates are protostome animals |journal=Science |date=17 March 1995 |volume=267 |issue=5204 |pages=1641–1643 |doi=10.1126/science.7886451 |pmid=7886451|bibcode=1995Sci...267.1641H }} 17. ^{{cite journal |last=Paps |first=J. |author2=Baguna, J. |author3=Riutort, M. |title=Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha |journal=Molecular Biology and Evolution |date=14 July 2009 |volume=26 |issue=10 |pages=2397–2406 |doi=10.1093/molbev/msp150 |pmid=19602542}} 18. ^{{cite journal |last=Telford |first=Maximilian J. |title=Resolving animal phylogeny: a sledgehammer for a tough nut? |journal=Developmental Cell |volume=14 |issue=4 |pages=457–459 |doi=10.1016/j.devcel.2008.03.016 |pmid=18410719 |date=15 April 2008}} 19. ^The Invertebrate Animals 20. ^{{cite journal | last1=Helfenbein | first1=Kevin G. | last2=Fourcade | first2=H. Matthew | last3=Vanjani | first3=Rohit G. | last4=Boore | first4=Jeffrey L. | date=20 July 2004 | title=The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes | journal=Proceedings of the National Academy of Sciences of the United States of America | volume=101 | issue=29 | pages=10639–10643 | doi=10.1073/pnas.0400941101| pmid=15249679 | pmc=489987| bibcode=2004PNAS..10110639H}} 21. ^{{cite journal | last1=Papillon | first1=Daniel | last2=Perez | first2=Yvan | last3=Caubit | first3=Xavier | last4=Yannick Le | first4=Parco | date=November 2004 | title=Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome | journal=Molecular Biology and Evolution | volume=21 | issue=11 | pages=2122–2129 | doi=10.1093/molbev/msh229| pmid=15306659 }} 22. ^1 {{Cite journal |last=Fröbius |first=Andreas C. |last2=Funch |first2=Peter |date=2017-04-04 |title=Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans |journal=Nature Communications |volume=8 |issue=1 |pages=9 |doi=10.1038/s41467-017-00020-w |pmid=28377584 |pmc=5431905 |bibcode=2017NatCo...8....9F }} 23. ^{{cite journal |first1=Gregory D. |last1=Edgecombe |first2=Gonzalo |last2=Giribet |first3=Casey W. |last3=Dunn |first4=Andreas |last4=Hejnol |first5=Reinhardt M. |last5=Kristensen |first6=Ricardo C. |last6=Neves |first7=Greg W. |last7=Rouse |first8=Katrine |last8=Worsaae |first9=Martin V. |last9=Sørensen |doi=10.1007/s13127-011-0044-4 |title=Higher-level metazoan relationships: recent progress and remaining questions |date=June 2011 |journal=Organisms, Diversity & Evolution |volume=11 |issue=2 |pages=151–172 }} 24. ^{{Cite journal |last=Smith |first=Martin R. |last2=Ortega-Hernández|first2=Javier|title=Hallucigenia's onychophoran-like claws and the case for Tactopoda |journal=Nature |volume=514|issue=7522 |pages=363–366 |doi=10.1038/nature13576 |pmid=25132546 |year=2014|bibcode=2014Natur.514..363S|url=http://dro.dur.ac.uk/19108/1/19108.pdf }} 25. ^{{Cite web |url=http://palaeos.com/metazoa/ecdysozoa/ecdysozoa.html |title=Palaeos Metazoa: Ecdysozoa |website=palaeos.com |access-date=2017-09-02}} 26. ^{{Cite journal |last=Yamasaki |first=Hiroshi |last2=Fujimoto |first2=Shinta |last3=Miyazaki |first3=Katsumi |date=June 2015 |title=Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences |journal=Zoological Letters |volume=1 |pages=18 |doi=10.1186/s40851-015-0017-0|pmid=26605063 |pmc=4657359 }} 27. ^{{Cite journal |last=Peterson |first=Kevin J. |last2=Cotton |first2=James A.|last3=Gehling |first3=James G. |last4=Pisani |first4=Davide |date=2008-04-27 |title=The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records |url=http://rstb.royalsocietypublishing.org/content/363/1496/1435 |journal=Philosophical Transactions of the Royal Society of London B: Biological Sciences |volume=363 |issue=1496 |pages=1435–1443 |doi=10.1098/rstb.2007.2233 |pmid=18192191 |pmc=2614224}} 28. ^1 {{Cite journal |last=Cannon |first=Johanna Taylor |last2=Vellutini |first2=Bruno Cossermelli |last3=Smith |first3=Julian |last4=Ronquist |first4=Fredrik |last5=Jondelius |first5=Ulf |last6=Hejnol |first6=Andreas |title=Xenacoelomorpha is the sister group to Nephrozoa |journal=Nature |volume=530 |issue=7588 |pages=89–93 |doi=10.1038/nature16520 |pmid=26842059 |year=2016 |bibcode=2016Natur.530...89C|url=http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1844 }} 29. ^{{Cite journal |last=Baguñà |first=Jaume |last2=Martinez |first2=Pere |last3=Paps |first3=Jordi |last4=Riutort |first4=Marta |date=April 2008 |title=Back in time: a new systematic proposal for the Bilateria |url=http://rstb.royalsocietypublishing.org/content/363/1496/1481 |journal=Philosophical Transactions of the Royal Society B: Biological Sciences |volume=363 |issue=1496 |pages=1481–1491 |doi=10.1098/rstb.2007.2238 |pmc=2615819 |pmid=18192186}} External links
3 : Bilaterians|Subkingdoms|Ediacaran first appearances |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。