请输入您要查询的百科知识:

 

词条 Watanabe–Akaike information criterion
释义

  1. References

In statistics, the widely applicable information criterion (WAIC), also known as Watanabe–Akaike information criterion, is the generalized version of the Akaike information criterion (AIC) onto singular statistical models.[1]

Widely applicable Bayesian information criterion (WBIC) is the generalized version of Bayesian information criterion (BIC) onto singular statistical models.[2]

WBIC is the average log likelihood function over the posterior distribution with the inverse temperature > 1/log n where n is the sample size.[2]

Both WAIC and WBIC can be numerically calculated without any information about a true distribution.

References

1. ^{{cite journal |authorlink=Sumio Watanabe |first=Sumio |last=Watanabe |year=2010 |title=Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory |journal=Journal of Machine Learning Research |volume=11 |pages=3571–3594 }}
2. ^{{cite journal |first=Sumio |last=Watanabe |year=2013 |url=http://www.jmlr.org/papers/volume14/watanabe13a/watanabe13a.pdf |title=A Widely Applicable Bayesian Information Criterion |journal=Journal of Machine Learning Research |volume=14 |pages=867–897 }}
{{DEFAULTSORT:Watanabe-Akaike information criterion}}{{statistics-stub}}

2 : Model selection|Bayesian statistics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/17 19:05:29