释义 |
- Terms for 100000
- Values of 100000
- Selected 6-digit numbers (100,001–999,999) 100,001 to 199,999 100,001 to 109,999 110,000 to 119,999 120,000 to 129,999 130,000 to 139,999 140,000 to 149,999 150,000 to 159,999 160,000 to 169,999 170,000 to 179,999 180,000 to 189,999 190,000 to 199,999 200,000 to 299,999 300,000 to 399,999 400,000 to 499,999 500,000 to 599,999 600,000 to 699,999 700,000 to 799,999 800,000 to 899,999 900,000 to 999,999
- References
{{redirect|100000}}{{redirect|999999|the string of nines in pi|Six nines in pi}}{{infobox number | number = 100000 | unicode = ↈ }}100,000 (one hundred thousand) is the natural number following 99,999 and preceding 100,001. In scientific notation, it is written as 105. Terms for 100000 In India, Pakistan and South Asia, one hundred thousand is called a lakh, and is written as 1,00,000. The Thai, Lao, Khmer and Vietnamese languages also have separate words for this number: {{lang|th|แสน}}, {{lang|lo|ແສນ}}, {{lang|km|សែន}} [saen] and ức respectively. No other major language has a special word for this number, preferring to refer to it as a multiple of smaller numbers.{{citation needed|date=February 2015}} In Cyrillic numerals, it is known as the legion (легион): or . Values of 100000 In astronomy, 100,000 metres, 100 kilometres, or 100 km (62 miles) is the altitude at which the Fédération Aéronautique Internationale (FAI) defines spaceflight to begin. In the Irish Language, céad míle fáilte (pronounced: {{IPA-ga|ceːd̪ˠ ˈmʲiːlʲə ˈfˠaːlʲtʲə}}) is a popular greeting meaning "A Hundred Thousand Welcomes". Selected 6-digit numbers (100,001–999,999)100,001 to 199,999100,001 to 109,999- 100,003 – smallest 6-digit prime number[1]
- 100,255 – Friedman number[2]
- 101,101 – smallest palindromic Carmichael number
- 101,723 – smallest prime number whose square is a pandigital number containing each digit from 0 to 9
- 102,564 – The smallest parasitic number
- 103,680 – highly totient number[3]
- 103,769 – the number of combinatorial types of 5-dimensional parallelohedra
- 103,823 – 473, nice Friedman number (−1 + 0 + 3×8×2)3
- 104,723 – the 9,999th prime number
- 104,729 – the 10,000th prime number
- 104,869 – the smallest prime number containing every non-prime digit.
- 104,976 – 184, 3-smooth number
- 105,664 – harmonic divisor number[4]
110,000 to 119,999- 110,880 – highly composite number[5]
- 111,111 – repunit
- 111,777 – smallest natural number requiring 17 syllables in American English, 19 in British English
- 113,634 – Motzkin number for n = 14[6]
- 114,689 – prime factor of F12
- 115,975 – Bell number[7]
- 116,281 – 3412, square number, centered decagonal number, 18-gon number
- 117,067 – first prime vampire number
- 117,649 – 76
- 117,800 – harmonic divisor number[4]
120,000 to 129,999- 120,284 – Keith number[8]
- 120,960 – highly totient number[3]
- 121,393 – Fibonacci number[9]
- 124,000 – number of Islamic prophets
- 127,777 – smallest natural number requiring 18 syllables in American English, 20 in British English
- 127,912 – Wedderburn–Etherington number[10]
- 128,981 – Starts the first prime gap sequence of 2, 4, 6, 8, 10, 12, 14
- 129,106 – Keith number[8]
130,000 to 139,999- 130,321 – 194
- 131,071 – Mersenne prime[11]
- 131,072 – 217
- 131,361 – Leyland number[12]
- 134,340 – Pluto's minor planet designation
- 135,137 – Markov number[13]
140,000 to 149,999- 142,129 – 3772, square number, dodecagonal number
- 142,857 – Kaprekar number, Harshad number smallest cyclic number in decimal.
- 144,000 – number with religious significance
- 147,640 – Keith number[8]
- 148,149 – Kaprekar number[14]
150,000 to 159,999- 156,146 – Keith number[8]
160,000 to 169,999- 160,000 – 204
- 161,051 – 115
- 161,280 – highly totient number[3]
- 166,320 – highly composite number[5]
- 167,400 – harmonic divisor number[4]
170,000 to 179,999- 173,600 – harmonic divisor number[4]
- 174,680 – Keith number[8]
- 174,763 – Wagstaff prime[15]
- 177,147 – 311
- 177,777 – smallest natural number requiring 19 syllables in American English, 21 in British English
- 178,478 – Leyland number[12]
180,000 to 189,999- 181,440 – highly totient number[3]
- 181,819 – Kaprekar number[14]
- 183,186 – Keith number[8]
- 187,110 – Kaprekar number[14]
190,000 to 199,999- 195,025 – Pell number,[16] Markov number[13]
- 196,418 – Fibonacci number,[9] Markov number[13]
- 196,560 – the kissing number in 24 dimensions
- 196,883 – the dimension of the smallest nontrivial irreducible representation of the Monster group
- 196,884 – the coefficient of q in the Fourier series expansion of the j-invariant. The adjacency of 196883 and 196884 was important in suggesting monstrous moonshine.
200,000 to 299,999- 206,265 – number of arc seconds in a radian (see also parsec)
- 207,360 – highly totient number[3]
- 208,012 – Catalan number[17]
- 208,335 – the largest number to be both triangular and square pyramidal
- 208,495 – Kaprekar number[14]
- 221,760 – highly composite number[5]
- 222,222 – repdigit
- 237,510 – harmonic divisor number[4]
- 241,920 – highly totient number[3]
- 242,060 – harmonic divisor number[4]
- 248,832 – 125, the smallest fifth power that can be represented as the sum of only 6 fifth powers
- 261,119 – Carol number[18]
- 262,144 – 218; exponential factorial of 4;[19] a superperfect number[20]
- 262,468 – Leyland number[12]
- 263,167 – Kynea number[21]
- 268,705 – Leyland number[12]
- 274,177 – prime factor of F6
- 277,200 – highly composite number[5]
- 279,936 – 67
- 280,859 – a six-digit prime number whose square (algebra) is tridigital.
- 293,547 – Wedderburn–Etherington number[10]
- 294,685 – Markov number[13]
- 298,320 – Keith number[8]
300,000 to 399,999- 310,572 – Motzkin number[6]
- 317,811 – Fibonacci number[9]
- 318,682 – Kaprekar number[14]
- 326,981 – alternating factorial[22]
- 329,967 – Kaprekar number[14]
- 332,640 – highly composite number;[5] harmonic divisor number[4]
- 333,333 – repdigit
- 333,667 – sexy prime and unique prime[23]
- 333,673 – sexy prime
- 333,679 – sexy prime
- 351,351 – only known odd abundant number that is not the sum of some of its proper, nontrivial (i.e. >1) divisors {{OEIS|A122036}}.
- 351,352 – Kaprekar number[14]
- 355,419 – Keith number[8]
- 356,643 – Kaprekar number[14]
- 360,360 – harmonic divisor number;[4] the smallest number divisible by all of the numbers 1 through 15
- 362,880 – 9!, highly totient number[3]
- 370,261 – first prime followed by a prime gap of over 100
- 371,293 – 135, palindromic in base 12 (15AA5112)
- 389,305 – self-descriptive number in base 7
- 390,313 – Kaprekar number[14]
- 390,625 – 58
- 397,585 – Leyland number[12]
400,000 to 499,999- 409,113 – sum of the first nine factorials
- 422,481 – smallest number whose fourth power is the sum of three smaller fourth powers
- 423,393 – Leyland number[12]
- 426,389 – Markov number[13]
- 426,569 – cyclic number in base 12
- 437,760 to 440,319 – {{anchor|440000}}any of these numbers will cause the Apple II+ and Apple //e computers to crash to a monitor prompt when entered at the Basic prompt, due to a short-cut in the Applesoft code programming of the overflow test when evaluating 16 bit numbers.[24] Entering 440000 at the prompt has been used to hack games that are protected against entering commands at the prompt after the game is loaded.
- 444,444 – repdigit
- 461,539 – Kaprekar number[14]
- 466,830 – Kaprekar number[14]
- 470,832 – Pell number[16]
- 483,840 – highly totient number[3]
- 498,960 – highly composite number[5]
- 499,393 – Markov number[13]
- 499,500 – Kaprekar number[14]
500,000 to 599,999- 500,500 – Kaprekar number,[14] sum of first 1000 integers
- 509,203 – Riesel number[25]
- 510,510 – the product of the first seven prime numbers, thus the seventh primorial[26]
- 514,229 – Fibonacci prime,[27] Markov number[13]
- 524,287 – Mersenne prime[11]
- 524,288 – 219
- 524,649 – Leyland number[12]
- 531,441 – 312
- 533,169 – Leyland number[12]
- 533,170 – Kaprekar number[14]
- 537,824 – 145
- 539,400 – harmonic divisor number[4]
- 548,834 – equal to the sum of the sixth powers of its digits
- 554,400 – highly composite number[5]
- 555,555 – repdigit
600,000 to 699,999- 604,800 – number of seconds in a week
- 646,018 – Markov number[13]
- 665,280 – highly composite number[5]
- 666,666 – repdigit
- 676,157 – Wedderburn–Etherington number[10]
- 678,570 – Bell number[7]
- 694,280 – Keith number[8]
- 695,520 – harmonic divisor number[4]
700,000 to 799,999- 720,720 – superior highly composite number;[28] colossally abundant number;[29] the smallest number divisible by all the numbers 1 through 16
- 725,760 – highly totient number[3]
- 726,180 – harmonic divisor number[4]
- 742,900 – Catalan number[17]
- 753,480 – harmonic divisor number[4]
- 759,375 – 155
- 765,623 – emirp, Friedman number 56 × 72 − 6 ÷ 3
- 777,777 – repdigit, smallest natural number requiring 20 syllables in American English, 22 in British English
800,000 to 899,999- 823,543 – 77
- 832,040 – Fibonacci number[9]
- 853,467 – Motzkin number[6]
- 873,612 – 11 + 22 + 33 + 44 + 55 + 66 + 77
- 888,888 – repdigit
900,000 to 999,999- 909,091 – unique prime
- 925,765 – Markov number[13]
- 925,993 – Keith number[8]
- 950,976 – harmonic divisor number[4]
- 967,680 – highly totient number[3]
- 999,983 – largest 6-digit prime number
- 999,999 – repdigit. Rational numbers with denominators 7 and 13 have 6-digit repetends when expressed in decimal form, because 999999 is divisible by 7 and by 13.
References1. ^{{Cite OEIS|1=A003617|2=Smallest n-digit prime|accessdate=7 September 2017}} 2. ^{{cite web |url=http://www2.stetson.edu/~efriedma/mathmagic/0800.html |title=Problem of the Month (August 2000) |accessdate=2013-01-13 |deadurl=no |archiveurl=https://web.archive.org/web/20121218102647/http://www2.stetson.edu/~efriedma/mathmagic/0800.html |archivedate=2012-12-18 |df= }} 3. ^1 2 3 4 5 6 7 8 9 {{Cite OEIS|1=A097942|2=Highly totient numbers|accessdate=2016-06-17}} 4. ^1 2 3 4 5 6 7 8 9 10 11 12 {{Cite OEIS|1=A001599|2=Harmonic or Ore numbers|accessdate=2016-06-17}} 5. ^1 2 3 4 5 6 7 {{Cite OEIS|1=A002182|2=Highly composite numbers|accessdate=2016-06-17}} 6. ^1 2 {{Cite OEIS|1=A001006|2=Motzkin numbers|accessdate=2016-06-17}} 7. ^1 {{Cite OEIS|1=A000110|2=Bell or exponential numbers|accessdate=2016-06-17}} 8. ^1 2 3 4 5 6 7 8 9 {{Cite OEIS|1=A007629|2=Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)access-date=2016-06-17}} 9. ^1 2 3 {{Cite OEIS|1=A000045|2=Fibonacci numbers|accessdate=2016-06-17}} 10. ^1 2 {{Cite OEIS|1=A001190|2=Wedderburn-Etherington numbers|accessdate=2016-06-17}} 11. ^1 {{Cite OEIS|1=A000668|2=Mersenne primes|accessdate=2016-06-17}} 12. ^1 2 3 4 5 6 7 {{Cite OEIS|1=A076980|2=Leyland numbers|accessdate=2016-06-17}} 13. ^1 2 3 4 5 6 7 8 {{Cite OEIS|1=A002559|2=Markoff (or Markov) numbers|accessdate=2016-06-17}} 14. ^1 2 3 4 5 6 7 8 9 10 11 12 13 {{Cite OEIS|1=A006886|2=Kaprekar numbers|accessdate=2016-06-17}} 15. ^{{Cite OEIS|1=A000979|2=Wagstaff primes|accessdate=2016-06-17}} 16. ^1 {{Cite OEIS|1=A000129|2=Pell numbers|accessdate=2016-06-17}} 17. ^1 {{Cite OEIS|1=A000108|2=Catalan numbers|accessdate=2016-06-17}} 18. ^{{Cite web|url=https://oeis.org/A093112|title=Sloane's A093112 : a(n) = (2^n-1)^2 - 2|accessdate=2016-06-17|deadurl=no|archiveurl=https://web.archive.org/web/20160623182210/https://oeis.org/A093112|archivedate=2016-06-23|df=}} 19. ^{{Cite web|url=https://oeis.org/A049384|title=Sloane's A049384 : a(0)=1, a(n+1) = (n+1)^a(n)access-date=2016-06-17|deadurl=no|archiveurl=https://web.archive.org/web/20160526184131/http://oeis.org/A049384|archivedate=2016-05-26|df=}} 20. ^{{Cite OEIS|1=A019279|2=Superperfect numbers|accessdate=2016-06-17}} 21. ^{{Cite web|url=https://oeis.org/A093069|title=Sloane's A093069 : a(n) = (2^n + 1)^2 - 2|accessdate=2016-06-17|deadurl=no|archiveurl=https://web.archive.org/web/20160805215102/https://oeis.org/A093069|archivedate=2016-08-05|df=}} 22. ^{{Cite OEIS|1=A005165|2=Alternating factorials|accessdate=2016-06-17}} 23. ^{{Cite OEIS|1=A040017|2=Unique period primes|accessdate=2016-06-17}} 24. ^{{cite web |url=http://www.txbobsc.com/scsc/scdocumentor/D912.html |title=Archived copy |accessdate=2016-04-04 |deadurl=no |archiveurl=https://web.archive.org/web/20160415032535/http://www.txbobsc.com/scsc/scdocumentor/D912.html |archivedate=2016-04-15 |df= }} Disassembled ROM. See comments at $DA1E. 25. ^{{Cite OEIS|1=A101036|2=Riesel numbers|accessdate=2016-06-17}} 26. ^{{Cite OEIS|1=A002110|2=Primorial numbers|accessdate=2016-06-17}} 27. ^{{Cite OEIS|1=A005478|2=Prime Fibonacci numbers|accessdate=2016-06-17}} 28. ^{{Cite OEIS|1=A002201|2=Superior highly composite numbers|accessdate=2016-06-17}} 29. ^{{Cite OEIS|1=A004490|2=Colossally abundant numbers|accessdate=2016-06-17}}
{{Large numbers}}{{DEFAULTSORT:100000}} 1 : Integers |