请输入您要查询的百科知识:

 

词条 Frobenius matrix
释义

  1. See also

  2. Notes

  3. References

{{for|the matrix norm|Frobenius matrix norm}}

A Frobenius matrix is a special kind of square matrix from numerical mathematics. A matrix is a Frobenius matrix if it has the following three properties:

  • all entries on the main diagonal are ones
  • the entries below the main diagonal of at most one column are arbitrary
  • every other entry is zero

The following matrix is an example.

Frobenius matrices are invertible. The inverse of a Frobenius matrix is again a Frobenius matrix, equal to the original matrix with changed signs outside the main diagonal. The inverse of the example above is therefore:

Frobenius matrices are named after Ferdinand Georg Frobenius. An alternative name for this class of matrices is Gauss transformation, after Carl Friedrich Gauss.[1] They are used in the process of Gaussian elimination to represent the Gaussian transformations.

If a matrix is multiplied from the left (left multiplied) with a Frobenius matrix, a linear combination of

the remaining rows is added to a particular row of the matrix. Multiplication with the inverse matrix subtracts the corresponding linear combination from the given row. This corresponds to one of the elementary operations of Gaussian elimination (besides the operation of transposing the rows and multiplying a row with a scalar multiple).

See also

  • Elementary matrix, a special case of a Frobenius matrix with only one off-diagonal nonzero

Notes

1. ^Golub and Van Loan, p. 95.

References

  • Gene H. Golub and Charles F. Van Loan (1996). Matrix Computations, third edition, Johns Hopkins University Press. {{ISBN|0-8018-5413-X}} (hardback), {{ISBN|0-8018-5414-8}} (paperback).
{{Linear-algebra-stub}}

1 : Matrices

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 12:30:05