请输入您要查询的百科知识:

 

词条 Multitaper
释义

  1. Motivation

  2. The method

     The Slepian sequences 

  3. Applications of multitaper method

  4. See also

  5. References

  6. External links

In signal processing, the multitaper method is a technique[1] developed by David J. Thomson to estimate the power spectrum SX of a stationary ergodic finite-variance random process X, given a finite contiguous realization of X as data. It is one of a number of approaches to spectral density estimation.

Motivation

The multitaper method overcomes some of the limitations of conventional Fourier analysis. When applying the Fourier transform to extract spectral information from a signal, we assume that each Fourier coefficient is a reliable representation of the amplitude and relative phase of the corresponding component frequency. This assumption, however, is not always valid. For instance, a single trial represents only one noisy realization of the underlying process of interest. A comparable situation arises in statistics when estimating measures of central tendency i.e., it is bad practice to estimate qualities of a population using individuals or very small samples. Likewise, a single sample of a process does not necessarily provide a reliable estimate of its spectral properties. Moreover, the naive power spectral density obtained from the signal's Fourier transform is a biased estimate of the true spectral content.

These problems are often overcome by averaging over many realizations of the same event. However, this method is unreliable with small data sets and undesirable when one does not wish to attenuate signal components that vary across trials. Instead of ensemble averaging, the multitaper method reduces estimation bias by obtaining multiple independent estimates from the same sample. Each data taper is multiplied element-wise by the signal to provide a windowed trial from which one estimates the power at each component frequency. As each taper is pairwise orthogonal to all other tapers, the windowed signals provide statistically independent estimates of the underlying spectrum. The final spectrum is obtained by averaging over all the tapered spectra. Thomson chose the Slepian or discrete prolate spheroidal sequences as tapers since these vectors are mutually orthogonal and possess desirable spectral concentration properties (see the section on Slepian sequences). In practice, a weighted average is often used to compensate for increased energy loss at higher order tapers[2].

The method

Consider a p-dimensional zero mean stationary stochastic process

Here T denotes the matrix transposition. In neurophysiology for example, p refers to the total number of channels and

hence can represent simultaneous measurement of

electrical activity of those p channels. Let the sampling interval

between observations be , so that the Nyquist frequency is .

The multitaper spectral estimator utilizes several different data tapers which are orthogonal to each other. The multitaper cross-spectral estimator between channel l and m is the average of K direct cross-spectral estimators between the same pair of channels (l and m) and hence takes the form

Here, (for ) is the kth direct cross spectral estimator between channel l and m and is given by

where

The Slepian sequences

The sequence is the data taper for the

kth direct cross-spectral estimator and is chosen as follows:

We choose a set of K orthogonal data tapers such that each one provides a good protection against leakage. These are given by the Slepian sequences[3], after David Slepian (also known in literature as discrete prolate spheroidal sequences or DPSS for short) with parameter W and orders k = 0 to K − 1. The maximum order K is chosen to be less than the Shannon number . The quantity 2W defines the resolution bandwidth for the spectral concentration problem and . When l = m, we get the multitaper estimator for the auto-spectrum of the lth channel. In recent years, a dictionary based on modulated DPSS was proposed as an overcomplete alternative to DPSS.[4]

See also Window function:DPSS or Slepian window

Applications of multitaper method

This technique is currently used in the spectral analysis toolkit of Chronux. An extensive treatment about the application of this method to analyze multi-trial, multi-channel data generated in neuroscience experiments, biomedical engineering and others can be found here. Not limited to time series, the multitaper method can be reformulated for spectral estimation on the sphere using Slepian functions constructed from spherical harmonics[5] for applications in geophysics and cosmology[6][7] among others.

See also

  • Periodogram

References

1. ^Thomson, D. J. (1982) "Spectrum estimation and harmonic analysis." Proceedings of the IEEE, 70, 1055–1096
2. ^Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge University Press, 1993.
3. ^Slepian, D. (1978) "Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case." Bell System Technical Journal, 57, 1371–1430
4. ^E. Sejdić, M. Luccini, S. Primak, K. Baddour, T. Willink, “Channel estimation using modulated discrete prolate spheroidal sequences based frames,” in Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las Vegas, Nevada, USA, March 31-April 04, 2008, pp. 2849-2852.
5. ^{{Cite journal | last1 = Simons | first1 = F. J. | last2 = Dahlen | first2 = F. A. | last3 = Wieczorek | first3 = M. A. | doi = 10.1137/S0036144504445765 | title = Spatiospectral Concentration on a Sphere | journal = SIAM Review | volume = 48 | issue = 3 | pages = 504–536 | year = 2006 | pmid = | pmc = | arxiv = math/0408424 | bibcode = 2006SIAMR..48..504S }}
6. ^{{Cite journal | last1 = Wieczorek | first1 = M. A. | last2 = Simons | first2 = F. J. | doi = 10.1007/s00041-006-6904-1 | title = Minimum-Variance Multitaper Spectral Estimation on the Sphere | journal = Journal of Fourier Analysis and Applications | volume = 13 | issue = 6 | pages = 665 | year = 2007 | pmid = | pmc = | arxiv = 1306.3254 }}
7. ^{{Cite journal | last1 = Dahlen | first1 = F. A. | last2 = Simons | first2 = F. J. | doi = 10.1111/j.1365-246X.2008.03854.x | title = Spectral estimation on a sphere in geophysics and cosmology | journal = Geophysical Journal International | volume = 174 | issue = 3 | pages = 774 | year = 2008 | pmid = | pmc = |arxiv = 0705.3083 |bibcode = 2008GeoJI.174..774D }}
  • {{Citation | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 13.4.3. Multitaper Methods and Slepian Functions | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=662}}

External links

  • [https://github.com/pantheras/mtpsd] C++/Octave libraries for the multitaper method, including adaptive weighting (hosted on GitHub)
  •   Documentation on the multitaper method from the SSA-MTM Toolkit implementation
  •   Fortran 90 library with additional multivariate applications
  • [https://code.google.com/p/pymutt/] Python module
  • [https://cran.r-project.org/web/packages/multitaper/index.html] R (programming language) multitaper Package
  • [https://github.com/krahim/dpss-splus-script] S-Plus script to generate Slepian sequences (dpss)

4 : Frequency-domain analysis|Signal processing|Time–frequency analysis|Signal estimation

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/13 11:16:56