词条 | Pseudo-Zernike polynomials |
释义 |
In mathematics, pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. They are also widely used in image analysis as shape descriptors. DefinitionThey are an orthogonal set of complex-valued polynomials defined as where and orthogonality on the unit disk is given as where the star means complex conjugation, and , ,are the standard transformations between polar and Cartesian coordinates. The radial polynomials are defined as[1] with integer coefficients ExamplesExamples are: MomentsThe pseudo-Zernike Moments (PZM) of order and repetition are defined as where , and takes on positive and negative integer values subject to . The image function can be reconstructed by expansion of the pseudo-Zernike coefficients on the unit disk as Pseudo-Zernike moments are derived from conventional Zernike moments and shown to be more robust and less sensitive to image noise than the Zernike moments.[1] See also
References1. ^1 {{cite journal|first1=C.-H.|last1=Teh|last2=Chin|first2=R.|title=On image analysis by the methods of moments|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence|volume=10|issue=4|year=1988|pages=496–513|doi=10.1109/34.3913}}
|last1=Belkasim |first1=S. |last2=Ahmadi |first2=M. |last3=Shridhar |first3=M. |title=Efficient algorithm for the fast computation of zernike moments |journal=Journal of the Franklin Institute |year=1996 |volume=333 |issue=4 |pages=577–581 |doi=10.1016/0016-0032(96)00017-8 }}
|last1=Haddadnia |first1=J. |last2=Ahmadi |first2=M. |last3=Faez |first3=K. |title=An efficient feature extraction method with pseudo-zernike moment in rbf neural network-based human face recognition system |journal=EURASIP Journal on Applied Signal Processing |year=2003 |pages=890–901 |doi=10.1155/S1110865703305128 |volume=2003 |issue=9 }}
|author= T.-W. Lin |author2=Y.-F. Chou |title=A comparative study of zernike moments |conference=Proceedings of the IEEE/WIC International Conference on Web Intelligence |year=2003 |pages=516–519 |url=http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1241255 |isbn=0-7695-1932-6 }}
|first1=C.-W. |last1=Chong |first2=P. |last2=Raveendran |first3=R. |last3=Mukundan |title=The scale invariants of pseudo-Zernike moments |journal=Pattern Anal. Applic. |year=2003 |volume=6 |pages=176–184 |doi=10.1007/s10044-002-0183-5 |issue=3 }}
|journal=Int. J. Pattern Recogn. Artif. Int. |year=2003 |volume=17 |issue=6 |pages=1011–1023 |doi= 10.1142/S0218001403002769 |url=http://ir.canterbury.ac.nz/bitstream/10092/448/1/12584534_ivcnz01.pdf |first1=Chee-Way |last1=Chong |first2=R. |last2=Mukundan |first3=P. |last3=Raveendran |title=An Efficient Algorithm for Fast Computation of Pseudo-Zernike Moments }}
|first1=Jamie |last1=Shutler |url=http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html |title=Complex Zernike Moments |year=1992 }}{{DEFAULTSORT:Pseudo-Zernike Polynomials}} 1 : Orthogonal polynomials |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。