词条 | Acrylamide |
释义 |
| Watchedfields = changed | verifiedrevid = 477241328 | ImageFileL1_Ref = {{chemboximage|correct|??}} | ImageFileL1 = Acrylamide-2D-skeletal.png | ImageSize = 100px | ImageFileR1 = Acrylamide-MW-2000-3D-balls.png | ImageFile2 = Acrylamide-MW-2000-3D-vdW.png | PIN = Prop-2-enamide[1] | OtherNames = Acrylamide Acrylic amide[2] |Section1={{Chembox Identifiers | IUPHAR_ligand = 4553 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = 20R035KLCI | KEGG_Ref = {{keggcite|correct|kegg}} | KEGG = C01659 | InChI = 1/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5) | InChIKey = HRPVXLWXLXDGHG-UHFFFAOYAS | SMILES1 = C=CC(=O)N | ChEMBL_Ref = {{ebicite|correct|EBI}} | ChEMBL = 348107 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C3H5NO/c1-2-3(4)5/h2H,1H2,(H2,4,5) | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = HRPVXLWXLXDGHG-UHFFFAOYSA-N | CASNo = 79-06-1 | CASNo_Ref = {{cascite|correct|CAS}} | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 28619 | SMILES = O=C(C=C)N | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID=6331 | PubChem = 6579 |Section2={{Chembox Properties | C=3 | H=5 | N=1 | O=1 | Appearance = white crystalline solid, no odor[2] | Density = 1.322 g/cm3 | MeltingPtC = 84.5 | BoilingPt = None (polymerization); decomposes at 175-300°C[2] | Solubility = 2.04 kg/L (25 °C) |Section3={{Chembox Hazards | GHSPictograms = {{GHSp|GHS06}}{{GHSp|GHS08}}[2] | HPhrases = {{H-phrases|301|312|315|317|319|332|340|350|361|372}}[2] | PPhrases = {{P-phrases|201|280|301+310|305+351+338|308+313}}[2] | ExternalSDS = ICSC 0091 | NFPA-H=3 | NFPA-F=2 | NFPA-R=2 | FlashPtC =138 | AutoignitionPtC =424 | PEL = TWA 0.3 mg/m3 [skin][3] | REL = Ca TWA 0.03 mg/m3 [skin][3] | IDLH = 60 mg/m3[3] | MainHazards = potential occupational carcinogen[3] | LD50 = 100-200 mg/kg (mammal, oral) 107 mg/kg (mouse, oral) 150 mg/kg (rabbit, oral) 150 mg/kg (guinea pig, oral) 124 mg/kg (rat, oral)[12] }}Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. It is produced industrially as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents. It is highly toxic, and partly for that reason it is mainly handled as an aqueous solution. The discovery that some cooked foods contain acrylamide had attracted significant attention to its possible biological effects.[13] ProductionAcrylamide can be prepared by the hydrolysis of acrylonitrile. The reaction is catalyzed by sulfuric acid as well as various metal salts. It is also catalyzed by the enzyme nitrile hydratase. [4] US demand for acrylamide was {{Convert|253000000|lbs|kg}} as of 2007, increased from {{Convert|245000000|lbs|kg}} in 2006. Acrylamide arises in some cooked foods via a series of steps initiated by the condensation of the amino acid asparagine and glucose. This condensation, one of the Maillard reactions followed by dehydrogenation produces N-(D-glucos-1-yl)-L-asparagine, which upon pyrolysis generates some acylamide. UsesThe majority of acrylamide is used to manufacture various polymers, especially polyacrylamide.[6][7] which are mainly used in water treatment.[8] Toxicity and carcinogenicityU.S. regulationAcrylamide is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.[9] Acrylamide is considered a potential occupational carcinogen by U.S. government agencies and classified as a Group 2A carcinogen by the IARC.[10] The Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set dermal occupational exposure limits at 0.03 mg/m3 over an eight-hour workday.[11] In animal models, exposure to acrylamide causes tumors in the adrenal glands, thyroid, lungs, and testes.[12] Acrylamide is easily absorbed by the skin and distributed throughout the organism; the highest levels of acrylamide post-exposure are found in the blood, non-exposed skin, kidneys, liver, testes, and spleen. Acrylamide can be metabolically-activated by cytochrome P450 to a genotoxic metabolite, glycidamide, which is considered to be a critical mode of action to the carcinogenesis of acrylamide. On the other hand, acrylamide and glycidamide can be detoxified via conjugation with glutathione to form acrylamide- and isomeric glycidamide-glutathione conjugates,[13] subsequently metabolized to mercapturic acids and excreted in urine. Acrylamide has also been found to have neurotoxic effects in humans who have been exposed. Animal studies show neurotoxic effects as well as mutations in sperm.[10] HazardsAcrylamide is also a skin irritant and may be a tumor initiator in the skin, potentially increasing risk for skin cancer. Symptoms of acrylamide exposure include dermatitis in the exposed area, and peripheral neuropathy.[10] Laboratory research has found that some phytochemicals may have the potential to be developed into drugs which could alleviate the toxicity of acrylamide.[14] Occurrence in food and associated health risksDiscovery of acrylamide in foodsAcrylamide was discovered in foods in April 2002 by Eritrean scientist Eden Tareke in Sweden when she found the chemical in starchy foods, such as potato chips (potato crisps), French fries (chips), and bread that had been heated higher than {{convert|120|C|F}} (production of acrylamide in the heating process was shown to be temperature dependent). It was not found in food that had been boiled[15] or in foods that were not heated.[16] Acrylamide has been found in roasted barley tea, called mugicha in Japanese. The barley is roasted so it is dark brown prior to being steeped in hot water. The roasting process produced 200–600 micrograms/kg of acrylamide in mugicha.[17] This is less than the >1000 micrograms/kg found in potato crisps and other fried whole potato snack foods cited in the same study and it is unclear how much of this is ingested after the drink is prepared. Rice cracker and sweet potato levels were lower than in potatoes. Potatoes cooked whole were found to have significantly lower acrylamide levels than the others, suggesting a link between food preparation method and acrylamide levels. Acrylamide levels appear to rise as food is heated for longer periods of time. Although researchers are still unsure of the precise mechanisms by which acrylamide forms in foods,[18] many believe it is a byproduct of the Maillard reaction. In fried or baked goods, acrylamide may be produced by the reaction between asparagine and reducing sugars (fructose, glucose, etc.) or reactive carbonyls at temperatures above {{convert|120|°C|°F|abbr=on}}.[19][20] Later studies have found acrylamide in black olives,[21] dried prunes,[22][23] dried pears,[22] coffee,[24][25] and peanuts[23] The US FDA has analyzed a variety of U.S. food products for levels of acrylamide since 2002.[26] According to the EFSA, the main toxicity risks of acrylamide are "Neurotoxicity, adverse effects on male reproduction, developmental toxicity and carcinogenicity".[41][27] However, according to their research, there is no concern on non-neoplastic effects. Furthermore, while the relation between consumption of acrylamide and cancer in rats and mice has been shown, it is still not clear whether acrylamide consumption has an effect on the risk of developing cancer in humans, and existing epidemological studies in humans are very limited and don't show any relation between acrylamide and cancer in humans.[41][28] Food industry workers exposed to twice the average level of acrylamide do not exhibit higher cancer rates.[41] Acceptable limitsAlthough acrylamide has known toxic effects on the nervous system and on fertility, a June 2002 report by the Food and Agriculture Organization of the United Nations and the World Health Organization attempting to establish basic toxicology (threshold limit value, no-observed-adverse-effect levels, tolerable daily intake, etc.) concluded the intake level required to observe neuropathy (0.5 mg/kg body weight/day) was 500 times higher than the average dietary intake of acrylamide (1 μg/kg body weight/day). For effects on fertility, the level is 2,000 times higher than the average intake.[29] From this, they concluded acrylamide levels in food were safe in terms of neuropathy, but raised concerns over human carcinogenicity based on known carcinogenicity in laboratory animals.[29] Opinions of health organizationsAccording to the American Cancer Society it is not clear, {{asof|2016|lc=yes}}, whether acrylamide consumption increases people's risk of developing cancer.[30] The World Health Organization (WHO) has set up a clearinghouse for information about acrylamide that includes a database of researchers and data providers; references for research published elsewhere; information updates about the current status of research efforts; and updates on information relevant to the health risk of acrylamide in food.[31] In February 2009, Health Canada announced that they were assessing whether acrylamide, which occurs naturally during the cooking of french fries, potato chips, and other processed foods, is a hazard to human health and whether any regulatory action needs to be taken. As of 2017, they are working with food producers and other governments to reduce the amount of acrylamide in processed foods.[32] In December 2009, after a positive reception from the food industry, Health Canada invited comment from the public on this proposal.[33] The European Chemical Agency added acrylamide to the list of substances of very high concern in March 2010.[34] Heat-generated food toxicants (HEATOX) studyThe Heat-generated Food Toxicants (HEATOX) Project was a European Commission-funded multidisciplinary research project running from late 2003 to early 2007. Its objectives were to "estimate health risks that may be associated with hazardous compounds in heat-treated food [, and to] find cooking/processing methods that minimize the amounts of these compounds, thereby providing safe, nutritious, and high-quality food-stuffs."[35][36] It found that "the evidence of acrylamide posing a cancer risk for humans has been strengthened,"[37] and that "compared with many regulated food carcinogens, the exposure to acrylamide poses a higher estimated risk to European consumers."[35] HEATOX sought also to provide consumers with advice on how to lower their intake of acrylamide, specifically pointing out that home-cooked food tends to contribute far less to overall acrylamide levels than food that was industrially prepared, and that avoiding overcooking is one of the best ways to minimize exposure at home.[35] Public awarenessOn April 24, 2002, the Swedish National Food Administration announced that acrylamide can be found in baked and fried starchy foods, such as potato chips, breads, and cookies. Concern was raised mainly because of the probable carcinogenic effects of acrylamide. This was followed by a strong, but short-lived, interest from the press. On August 26, 2005, California attorney general Bill Lockyer filed a lawsuit against four makers of french fries and potato chips – H.J. Heinz Co., Frito-Lay, Kettle Foods Inc., and Lance Inc. – to reduce the risk to consumers from consuming acrylamide.[38] The lawsuit was settled on August 1, 2008, with the food producers agreeing to cut acrylamide levels to 275 parts per billion in three years, to avoid a Proposition 65 warning label.[39] The companies avoided trial by agreeing to pay a combined $3 million in fines as a settlement with the California attorney general's office.[40] In 2016 the UK Food Standards Agency launched a campaign called "Go for Gold" warning of the possible cancer risk associated with cooking potatoes and other starchy foods at high temperatures.[41][42] In 2018, a judge in California ruled that the coffee industry had not provided sufficient evidence that acrylamide contents in coffee were at safe enough levels to not require a Proposition 65 warning.[43] Occurrence in other productsCigarettesCigarette smoking is a major acrylamide source.[44][45] It has been shown in one study to cause an increase in blood acrylamide levels three-fold greater than any dietary factor.[46]See also
References1. ^{{cite book | title = Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book) | publisher = The Royal Society of Chemistry | date = 2014 | location = Cambridge | page = 842 | doi = 10.1039/9781849733069-FP001 | isbn = 978-0-85404-182-4| title-link = Nomenclature of Organic Chemistry | chapter = Front Matter }} 2. ^1 2 {{Sigma-Aldrich|fluka|id=01700|name=Acrylamide|accessdate=2013-07-20}} 3. ^1 2 3 4 5 6 {{PGCH|0012}} 4. ^1 {{cite encyclopedia|authors=Takashi Ohara, Takahisa Sato, Noboru Shimizu, Günter Prescher Helmut Schwind, Otto Weiberg, Klaus Marten, Helmut Greim|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry|year=2003|publisher=Wiley-VCH|location=Weinheim| doi=10.1002/14356007.a01_161.pub2|isbn=978-3527306732|chapter=Acrylic Acid and Derivatives}} 5. ^{{cite journal|title=Chemistry, Biochemistry, and Safety of Acrylamide. A Review|author=Mendel Friedman|journal=J. Agric. Food Chem.|year=2003|volume=51|issue=16|pages=4504–4526|doi=10.1021/jf030204+|pmid=14705871}} 6. ^{{cite web |url=http://www.ec.gc.ca/ese-ees/default.asp?lang=En&xml=FF4FCD6E-B330-7266-D1FD-B44C48A6BC9B |title=Screening Assessment for the Challenge: 2-Propenamide (Acrylamide) |author1=Environment Canada|author2 = Health Canada |date=August 2009 |accessdate=|website = Environment and Climate Change Canada|publisher = Government of Canada }} 7. ^{{cite report|author = Office of Pollution Prevention and Toxics|date=September 1994|title = Chemical Summary for Acrylamide|publisher = United States Environmental Protection Agency|format = plain text|accessdate = November 30, 2013|chapter = II. Production, Use, and Trends|url = http://www.epa.gov/chemfact/s_acryla.txt|docket = EPA 749-F-94-005a}} 8. ^{{Cite web|url = http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+@rel+9003-05-8|title = Polyacrylamide|date = February 14, 2003|accessdate = November 30, 2013|publisher = United States National Library of Medicine|at = Consumption Patterns|id = CASRN: 9003-05-8|website = Hazardous Substances Data Bank}} 9. ^{{Cite journal | publisher = Government Printing Office | title = 40 C.F.R.: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities | url = http://edocket.access.gpo.gov/cfr_2008/julqtr/pdf/40cfr355AppA.pdf | edition = July 1, 2008 | accessdate = October 29, 2011 }} 10. ^1 2 {{Cite journal|url = https://www.cdc.gov/niosh/docs/2011-139/pdfs/2011-139.pdf|title = NIOSH skin notation (SK) profile: acrylamide [CAS No. 79-06-1].|last = Dotson|first = GS|date = April 2011|journal = DHHS (NIOSH) Publication No. 2011-139|doi = |pmid = |access-date = }} 11. ^1 {{cite web|author=Centers for Disease Control and Prevention|title=Documentation for Immediately Dangerous To Life or Health Concentrations (IDLHs) - Acrylamide|url=https://www.cdc.gov/niosh/idlh/79061.html|year=1994}} 12. ^{{PGCH|0012}} 13. ^{{cite journal|title=Synthesis, characterization and analysis of the acrylamide-and glycidamide-glutathione conjugates|journal=Chemico-Biological Interactions|date=July 2015|volume=237|pages=38–46|doi=10.1016/j.cbi.2015.05.002|pmid=25980586|last1=Luo|first1=Yu-Syuan|last2=Long|first2=Tai-Ying|last3=Shen|first3=Li-Ching|last4=Huang|first4=Shou-Ling|last5=Chiang|first5=Su-Yin|last6=Wu|first6=Kuen-Yuh}} 14. ^{{cite journal |vauthors=Adewale OO, Brimson JM, Odunola OA, Gbadegesin MA, Owumi SE, Isidoro C, Tencomnao T |title=The Potential for Plant Derivatives against Acrylamide Neurotoxicity |journal=Phytother Res |volume= 29|issue= 7|pages= 978–85|year=2015 |pmid=25886076 |doi=10.1002/ptr.5353 |type=Review}} 15. ^{{cite web|website =Food Standards Agency|title = Acrylamide: your questions answered|date = 3 July 2009 |url=http://www.food.gov.uk/safereating/chemsafe/acrylamide_branch/acrylamide_study_faq/ |accessdate=|deadurl=yes |archiveurl=https://web.archive.org/web/20120212183149/http://www.food.gov.uk/safereating/chemsafe/acrylamide_branch/acrylamide_study_faq/ |archivedate=2012-02-12 |df= }} 16. ^{{cite journal|author = Tareke E|title = Analysis of acrylamide, a carcinogen formed in heated foodstuffs|journal = J. Agric. Food Chem.|volume = 50|issue = 17|pages = 4998–5006|year = 2002|pmid = 12166997|doi = 10.1021/jf020302f|author2 = Rydberg P.|display-authors = 2|last3 = Karlsson|first3 = Patrik|last4 = Eriksson|first4 = Sune|last5 = Törnqvist|first5 = Margareta}} 17. ^{{cite journal |doi=10.1080/0265203021000060887|pmid=12623644|title=Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods|journal=Food Additives and Contaminants|volume=20|issue=3|pages=215–20|year=2003|last1=Ono|first1=H.|last2=Chuda|first2=Y.|last3=Ohnishi-Kameyama|first3=M.|last4=Yada|first4=H.|last5=Ishizaka|first5=M.|last6=Kobayashi|first6=H.|last7=Yoshida|first7=M.}} 18. ^{{Cite journal | doi=10.1111/j.1365-2621.2003.tb09641.x|title = A Novel Technique for Limitation of Acrylamide Formation in Fried and Baked Corn Chips and in French Fries| journal=Journal of Food Science| volume=68| issue=4| pages=1287–1290|year = 2003|last1 = Jung|first1 = M.Y.| last2=Choi| first2=D.S.| last3=Ju| first3=J.W.}} 19. ^{{cite journal|author1=Mottram DS |author2=Wedzicha BL. |author3=Dodson AT. |title = Acrylamide is formed in the Maillard reaction|journal = Nature|volume = 419|issue = 6906|pages = 448–449|year = 2002|doi = 10.1038/419448a| pmid = 12368844}} 20. ^{{cite web|work =Chemistry World|title= Acrylamide cancer link confirmed|url = http://www.rsc.org/chemistryworld/News/2007/December/05120703.asp|last = Van Noorden|first = Richard|date = 5 December 2007}} 21. ^"Acrylamide detected in prune juice and olives" Food Safety & Quality Control Newsletter 26 March 2004, William Reed Business Media SAS, citing "Survey Data on Acrylamide in Food: Total Diet Study Results" {{webarchive|url=https://web.archive.org/web/20090605153328/http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/ChemicalContaminants/Acrylamide/default.htm |date=2009-06-05 }} United States Food and Drug Administration February 2004; later updated in June 2005, July 2006, and October 2006 22. ^1 {{cite web | url=http://www.ethlife.ethz.ch/archive_articles/070920-acrylamid/index_EN.html | title=Acrylamide in dried Fruits | work=ETH Life | publisher=Swiss Federal Institute of Technology Zurich| date=September 20, 2007 | accessdate=2017-05-29| author=Cosby, Renata}} 23. ^1 {{cite journal|last=De Paola|first=Eleonora L.|first2=Giuseppe |last2=Montevecchi |first3=Francesca |last3=Masino |first4=Davide |last4=Garbini |first5=Martino |last5=Barbanera |first6=Andrea |last6=Antonelli |date=February 2017|title=Determination of acrylamide in dried fruits and edible seeds using QuEChERS extraction and LC separation with MS detection|journal=Food Chemistry|volume=217|pages=191–195|pmid=27664625|doi=10.1016/j.foodchem.2016.08.101}} 24. ^{{cite journal|pmid=15769965|year=2005|last1=Mucci|first1=LA|last2=Sandin|first2=S|last3=Bälter|first3=K|last4=Adami|first4=HO|last5=Magnusson|first5=C|last6=Weiderpass|first6=E|title=Acrylamide intake and breast cancer risk in Swedish women|volume=293|issue=11|pages=1326–7|doi=10.1001/jama.293.11.1326|journal=The Journal of the American Medical Association}} 25. ^Top Eight Foods by Acrylamide Per Portion. p. 17. jifsan.umd.edu (2004). Retrieved on 2012-06-11. 26. ^Survey Data on Acrylamide in Food: Individual Food Products. Fda.gov. Retrieved on 2012-06-11. 27. ^{{cite journal |title=Scientific Opinion on acrylamide in food |journal=EFSA Journal |volume=13 |issue=6 |pages=4104 |date=June 4, 2015 |doi=10.2903/j.efsa.2015.4104}} 28. ^{{cite web |title=Acrylamide and Cancer Risk |url=https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/acrylamide-fact-sheet |publisher=National Cancer Institute (U.S. Department of Health and Human Services) |date=December 5, 2017 |accessdate=April 23, 2018}} 29. ^1 [https://web.archive.org/web/20140407083715/http://www.who.int/foodsafety/publications/chem/en/acrylamide_summary.pdf FAO/WHO Consultation on the Health Implications of Acrylamide in Food; Geneva, 25–27 June 2002, Summary Report]. (PDF) . Retrieved on 2014-11-09. 30. ^{{cite web |url=http://www.cancer.org/cancer/cancercauses/othercarcinogens/athome/acrylamide |title=Acrylamide |date=10 March 2016 |publisher=American Cancer Society |accessdate=20 September 2016}} 31. ^{{cite web|url = http://www.who.int/foodsafety/areas_work/chemical-risks/acrylamide/en/|title = Acrylamide|deadurl = no |archiveurl=https://web.archive.org/web/20171020005041/http://www.who.int/foodsafety/areas_work/chemical-risks/acrylamide/en/ |archivedate=20 October 2017|publisher = WHO}} 32. ^{{cite web |url = https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/food-processing-induced-chemicals/acrylamide.html|title =Acrylamide|website = Canada.ca|publisher = Government of Canada|date = 8 March 2017|accessdate = 29 March 2018}} 33. ^{{cite news| url=https://www.thestar.com/news/canada/article/741811--do-you-want-anti-cancer-drug-in-junk-food?bn=1|work=The Star|location=Toronto|title=Do you want anti-cancer drug in junk food?|date=2009-12-22|accessdate=2010-04-23}} 34. ^Candidate List of Substances of Very High Concern for authorisation. Echa.europa.eu. Retrieved on 2012-06-11. 35. ^1 2 [https://web.archive.org/web/20110612202416/http://www.slv.se/upload/heatox/documents/D62_final_project_leaflet_.pdf Heat-generated Food Toxicants; Identification, Characterisation and Risk Minimisation]. (PDF) . Retrieved on 2012-06-11. 36. ^[https://web.archive.org/web/20081217145945/http://www.slv.se/upload/heatox/documents/Heatox_Final%20_report.pdf HEATOX, Heat-generated food toxicants: identification, characterisation and risk minimisation]. (PDF) . Retrieved on 2012-06-11. 37. ^[https://web.archive.org/web/20110612101432/http://www.slv.se/upload/heatox/documents/Pressrelease_HEATOX_project_completed_%E2%80%93_brings_new_pieces_to_the_Acrylamide_Puzzle.pdf HEATOX project completed – brings new pieces to the Acrylamide Puzzle]. (PDF) . Retrieved on 2012-06-11. 38. ^Attorney General Lockyer Files Lawsuit to Require Consumer Warnings About Cancer-Causing Chemical in Potato Chips and French Fries, Office of the attorney general, State of California, Department of justice 39. ^{{cite web|url = https://www.sfgate.com/bayarea/article/Lawsuit-over-potato-chip-ingredient-settled-3275149.php|title = Lawsuit over potato chip ingredients settled|last = Egelko|first = Bob|date = 2 August 2008|work = SFGate}} 40. ^{{cite news|url=https://news.yahoo.com/s/ap/20080802/ap_on_bi_ge/potato_chip_lawsuit |title=Settlement will reduce carcinogens in potato chips |agency=Associated Press |accessdate=2008-08-02 |archiveurl=https://web.archive.org/web/20080821235756/http://news.yahoo.com/s/ap/20080802/ap_on_bi_ge/potato_chip_lawsuit |archivedate=2008-08-21 |deadurl=no |df= }} 41. ^1 2 3 {{cite web |publisher=Cancer Research UK| title=Food Controversies—Acrylamide |url=http://www.cancerresearchuk.org/about-cancer/causes-of-cancer/diet-and-cancer/food-controversies#food_controversies0 |date=August 19, 2016 |accessdate=23 January 2017}} 42. ^{{cite web | url=https://www.food.gov.uk/news-updates/news/2017/15890/families-urged-to-go-for-gold-to-reduce-acrylamide-consumption | title=Families urged to 'Go for Gold' to reduce acrylamide consumption | work=Food Standards Agency | date=January 23, 2017 | accessdate=January 25, 2017}} 43. ^{{cite news|url = https://www.reuters.com/article/us-california-lawsuit-coffee/starbucks-coffee-in-california-must-have-cancer-warning-judge-says-idUSKBN1H5399|title = Starbucks coffee in California must have cancer warning, judge says|last = Raymond|first = Nate|date = 29 March 2018|accessdate = 29 March 2018|work = Reuters}} 44. ^{{cite web|website = ATSDR |url = https://www.atsdr.cdc.gov/phs/phs.asp?id=1113&tid=236 |title = Public Health Statement for Acrylamide |date = December 2012|publisher = CDC}} 45. ^{{cite journal|title=Assessment of the Relation between Biomarkers for Smoking and Biomarkers for Acrylamide Exposure in Humans |doi=10.1158/1055-9965.EPI-06-1058|pmid=18006939|year=2007|last1=Vesper|first1=H. W.|last2=Bernert|first2=J. T.|last3=Ospina|first3=M.|last4=Meyers|first4=T.|last5=Ingham|first5=L.|last6=Smith|first6=A.|last7=Myers|first7=G. L.|journal=Cancer Epidemiology, Biomarkers & Prevention|volume=16|issue=11|pages=2471–2478 }} 46. ^{{cite journal|pmid=18183576|year=2008|last1=Olesen|first1=PT|last2=Olsen|first2=A|last3=Frandsen|first3=H|last4=Frederiksen|first4=K|last5=Overvad|first5=K|last6=Tjønneland|first6=A|title=Acrylamide exposure and incidence of breast cancer among postmenopausal women in the Danish Diet, Cancer and Health Study|volume=122|issue=9|pages=2094–100|doi=10.1002/ijc.23359|journal=International Journal of Cancer|url=http://orbit.dtu.dk/en/publications/acrylamide-exposure-and-incidence-of-breast-cancer-among-postmenopausal-women-in-the-danish-diet-cancer-and-health-study(6fce0580-3cbe-4286-94e4-25187c05965b).html}} External links{{commonscat|Acrylamide}}
7 : Acrylamides|Carboxamides|Hazardous air pollutants|IARC Group 2A carcinogens|Monomers|Reproductive toxicants|Suspected fetotoxicants |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。