词条 | Sub-pixel resolution |
释义 |
In digital image processing, sub-pixel resolution can be obtained in images constructed from sources with information exceeding the nominal pixel resolution of said images. Aliasing{{main|Aliasing}}When an object with a certain resolution is represented on a display with lower resolution, the imperfections due to the loss of information are known as aliasing. This can happen with geometric objects, vector graphics, vector fonts or 3D graphics. The most common kind of visual aliasing is when a smooth object such as a line appears jagged because the pixels are large enough to be easily distinguished by the naked eye. These effects can be reduced by anti-aliasing techniques, e.g. adjusting the colour or transparency of a pixel according to how much of it is covered by the object (sub-pixel rendering). Example{{Expand section|date=January 2011}}For example, if the image of a ship of length {{convert|50|m}}, viewed side-on, is 500 pixels long, the nominal resolution (pixel size) on the side of the ship facing the camera is {{convert|0.1|m}}. Now sub-pixel resolution of well resolved features can measure ship movements which are an order of magnitude (10×) smaller. Movement is specifically mentioned here because measuring absolute positions requires an accurate lens model and known reference points within the image to achieve sub-pixel position accuracy. Small movements can however be measured (down to 1 cm) with simple calibration procedures.{{Citation needed|date=January 2010}} Specific fit functions often suffer specific bias with respect to image pixel boundaries. Users should therefore take care to avoid these "pixel locking" (or "peak locking") effects.[1] Determining feasibilityWhether features in a digital image are sharp enough to achieve sub-pixel resolution can be quantified by measuring the point spread function (PSF) of an isolated point in the image. If the image does not contain isolated points, similar methods can be applied to edges in the image. It is also important when attempting sub-pixel resolution to keep image noise to a minimum. This, in the case of a stationary scene, can be measured from a time series of images. Appropriate pixel averaging, through both time (for stationary images) and space (for uniform regions of the image) is often used to prepare the image for sub-pixel resolution measurements. Footnotes1. ^"Accurate particle position measurement from images". Y. Feng, J. Goree, and Bin Liu, Review of Scientific Instruments, Vol. 78, 053704 (2007); also selected for Virtual Journal of Biological Physics Research, Vol. 13, (2007). References{{refbegin}}
1 : Image processing |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。