请输入您要查询的百科知识:

 

词条 Wiedersehen pair
释义

  1. See also

  2. References

  3. External links

In mathematics—specifically, in Riemannian geometry—a Wiedersehen pair is a pair of distinct points x and y on a (usually, but not necessarily, two-dimensional) compact Riemannian manifold (Mg) such that every geodesic through x also passes through y (and the same with x and y interchanged).

For example, on an ordinary sphere where the geodesics are great circles, the Wiedersehen pairs are exactly the pairs of antipodal points.

If every point of an oriented manifold (Mg) belongs to a Wiedersehen pair, then (Mg) is said to be a Wiedersehen manifold. The concept was introduced by the Austro-Hungarian mathematician Wilhelm Blaschke and comes from the German term meaning "seeing again". As it turns out, in each dimension n the only Wiedersehen manifold (up to isometry) is the standard Euclidean n-sphere. Initially known as the Blaschke conjecture, this result was established by combined works of Berger, Kazdan, Weinstein (for even n), and Yang (odd n).

See also

  • Cut locus (Riemannian manifold)

References

  • {{cite book

| last = Blaschke
| first = Wilhelm
| authorlink = Wilhelm Blaschke
| title = Vorlesung über Differentialgeometrie I
| location = Berlin
| publisher = Springer-Verlag
| year = 1921
}}
  • {{cite journal

| author=C. T. Yang
| authorlink=Chung Tao Yang
| year=1980
| title=Odd-dimensional wiedersehen manifolds are spheres
| journal=J. Differential Geom.
| volume=15
| issue=1
| pages=91–96
| issn=0022-040X
}}
  • {{cite book | last=Chavel | first=Isaac | authorlink=Isaac Chavel | title=Riemannian geometry: a modern introduction | date=2006 | publisher=Cambridge University Press | location=New York | isbn=0-521-61954-8 | pages=328–329}}

External links

  • {{MathWorld|urlname=WiedersehenPair|title=Wiedersehen pair}}
  • {{MathWorld|urlname=WiedersehenSurface|title=Wiedersehen surface}}

1 : Riemannian geometry

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 18:26:27