释义 |
- Biochemistry
- Pharmacology
- Health effects
- Omega-6 consumption
- List of omega-6 fatty acids
- Dietary linoleic acid requirement
- Dietary sources
- See also
- Notes and references Additional sources
{{About||an explanation of n and numerical nomenclature (such as n-6 or 18:2)|Fatty acid#Nomenclature|the 1920s French automobile|Oméga-Six}}{{Distinguish|trans fatty acids|omega-3 fatty acid}}{{Fats}}Omega-6 fatty acids (also referred to as ω-6 fatty acids or n-6 fatty acids) are a family of polyunsaturated fatty acids that have in common a final carbon-carbon double bond in the n-6 position, that is, the sixth bond, counting from the methyl end.[1] Members of the family can have pro-inflammatory or anti-inflammatory effects.[2]The biological effects of the omega-6 fatty acids are largely produced during and after physical activity for the purpose of promoting growth and during the inflammatory cascade to halt cell damage and promote cell repair by their conversion to omega-6 eicosanoids that bind to diverse receptors found in every tissue of the body. BiochemistryLinoleic acid (18:2, n−6), the shortest-chained omega-6 fatty acid, is one of many essential fatty acids and is categorized as an essential fatty acid because the human body cannot synthesize it. Mammalian cells lack the enzyme omega-3 desaturase and therefore cannot convert omega-6 fatty acids to omega-3 fatty acids. Closely related omega-3 and omega-6 fatty acids act as competing substrates for the same enzymes.[3] This outlines the importance of the proportion of omega-3 to omega-6 fatty acids in a diet.[3]Omega-6 fatty acids are precursors to endocannabinoids, lipoxins, and specific eicosanoids. Medical research on humans found a correlation (though correlation does not imply causation) between the high intake of omega-6 fatty acids from vegetable oils and disease in humans. However, biochemistry research has concluded that air pollution, heavy metals, smoking, passive smoking, lipopolysaccharides, lipid peroxidation products (found mainly in vegetable oils, roasted nuts and roasted oily seeds) and other exogenous toxins initiate the inflammatory response in the cells which leads to the expression of the COX-2 enzyme and subsequently to the temporary production of inflammatory promoting prostaglandins from arachidonic acid for the purpose of alerting the immune system of the cell damage and eventually to the production of anti-inflammatory molecules (e.g. lipoxins & prostacyclin) during the resolution phase of inflammation, after the cell damage has been repaired.[4][5][6][7][8][9][10][11][12][13][14][15] PharmacologyThe conversion of cell membrane arachidonic acid (20:4n-6) to omega-6 prostaglandin and omega-6 leukotriene eicosanoids during the inflammatory cascade provides many targets for pharmaceutical drugs to impede the inflammatory process in atherosclerosis, asthma, arthritis, vascular disease, thrombosis, immune-inflammatory processes, and tumor proliferation. Competitive interactions with the omega-3 fatty acids affect the relative storage, mobilization, conversion and action of the omega-3 and omega-6 eicosanoid precursors (see Essential fatty acid interactions). Health effectsSome medical research suggests that excessive levels of omega-6 fatty acids from seed oils relative to certain omega-3 fatty acids may increase the probability of a number of diseases.[16][17][18]. However, consumption of non-rancid nuts, which are high in omega 6, is associated with a lower risk for some diseases, such as cardiovascular diseases[19] including coronary heart disease (CHD), cancer, stroke, heart attacks, and lower rates of premature death.[19][20][21][22] Modern Western diets typically have ratios of omega-6 to omega-3 in excess of 10, some as high as 30; the average ratio of omega-6 to omega-3 in the Western diet is 15–16.7. Humans are thought to have evolved with a diet of a 1-to-1 ratio of omega-6 to omega-3 and the optimal ratio is thought to be 4 or lower,Excess omega-6 fatty acids from vegetable oils interfere with the health benefits of omega-3 fats, in part because they compete for the same rate-limiting enzymes. A high proportion of omega-6 to omega-3 fat in the diet shifts the physiological state in the tissues toward the pathogenesis of many diseases: prothrombotic, proinflammatory and proconstrictive.[24] Chronic excessive production of omega-6 eicosanoids is correlated with arthritis, inflammation, and cancer. Many of the medications used to treat and manage these conditions work by blocking the effects of the COX-2 enzyme.[25] Many steps in formation and action of omega-6 prostaglandins from omega-6 arachidonic acid proceed more vigorously than the corresponding competitive steps in formation and action of omega-3 hormones from omega-3 eicosapentaenoic acid.[26] The COX-1 and COX-2 inhibitor medications, used to treat inflammation and pain, work by preventing the COX enzymes from turning arachidonic acid into inflammatory compounds.name="lee2007">{{cite journal |doi=10.1016/j.plefa.2007.10.018 |title=Antimanic therapies target brain arachidonic acid signaling: Lessons learned about the regulation of brain fatty acid metabolism |year=2007 |last1=Lee |first1=Ho-Joo |last2=Rao |first2=Jagadeesh S. |last3=Rapoport |first3=Stanley I. |last4=Bazinet |first4=Richard P. |journal=Prostaglandins, Leukotrienes and Essential Fatty Acids |volume=77 |issue=5–6 |pages=239–46 |pmid=18042366}} A high consumption of oxidized polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil, may increase the likelihood that postmenopausal women will develop breast cancer.[29] Similar effect was observed on prostate cancer, but the study was performed on mice.[30] Another "analysis suggested an inverse association between total polyunsaturated fatty acids and breast cancer risk, but individual polyunsaturated fatty acids behaved differently [from each other]. [...] a 20:2 derivative of linoleic acid [...] was inversely associated with the risk of breast cancer".[31] Omega-6 consumptionIndustry-sponsored studies have suggested that omega-6 fatty acids should be consumed in a 1:1 ratio to omega-3,[32] though it has been observed that the diet of many individuals today is at a ratio of about 16:1, mainly from vegetable oils.[32] Omega-6 and omega-3 are essential fatty acids that are metabolized by some of the same enzymes, and therefore an imbalanced ratio can affect how the other is metabolized.[33] In a study performed by Ponnampalam,[34] it was noticed that feeding systems had a great effect on nutrient content on the meat sold to consumers. Cynthia Doyle conducted an experiment to observe the fatty acid content of beef raised through grass feeding versus grain feeding; she concluded that grass fed animals contain an overall omega-6:omega-3 ratio that is preferred by nutritionists.[33] In today's modern agriculture, the main focus is on production quantity, which has decreased the omega-3 content, and increased the omega-6 content, due to simple changes such as grain-feeding cattle. In grain-feeding cattle, this is a way to increase their weight and prepare them for slaughter much quicker compared to grass-feeding. This modern way of feeding animals may be one of many indications as to why the omega-6:omega-3 ratio has increased. List of omega-6 fatty acids Common name | Lipid name | Chemical name | Linoleic acid (LA) | 18:2 (n−6) | all-cis-9,12-octadecadienoic acid | Gamma-linolenic acid (GLA) | 18:3 (n−6) | all-cis-6,9,12-octadecatrienoic acid | Calendic acid | 18:3 (n−6) | 8E,10E,12Z-octadecatrienoic acid | Eicosadienoic acid | 20:2 (n−6) | all-cis-11,14-eicosadienoic acid | Dihomo-gamma-linolenic acid (DGLA) | 20:3 (n−6) | all-cis-8,11,14-eicosatrienoic acid | Arachidonic acid (AA, ARA) | 20:4 (n−6) | all-cis-5,8,11,14-eicosatetraenoic acid | Docosadienoic acid | 22:2 (n−6) | all-cis-13,16-docosadienoic acid | Adrenic acid | 22:4 (n−6) | all-cis-7,10,13,16-docosatetraenoic acid | Osbond acid | 22:5 (n−6) | all-cis-4,7,10,13,16-docosapentaenoic acid | Tetracosatetraenoic acid | 24:4 (n−6) | all-cis-9,12,15,18-tetracosatetraenoic acid | Tetracosapentaenoic acid | 24:5 (n−6) | all-cis-6,9,12,15,18-tetracosapentaenoic acid |
The melting point of the fatty acids increase as the number of carbons in the chain increases. Dietary linoleic acid requirementAdding more controversy to the omega-6 fat issue is that the dietary requirement for linoleic acid has been questioned, because of a significant methodology error proposed by University of Toronto scientist Stephen Cunnane.[35] Cunnane proposed that the seminal research used to determine the dietary requirement for linoleic acid was based on feeding animals linoleic acid-deficient diets, which were simultaneously deficient in omega-3 fats. The omega-3 deficiency was not taken into account. The omega-6 oils added back systematically to correct the deficiency also contained trace amounts of omega-3 fats. Therefore, the researchers were inadvertently correcting the omega-3 deficiency as well. Ultimately, it took more oil to correct both deficiencies. According to Cunnane, this error overestimates linoleic acid requirements by 5 to 15 times.{{update inline|date=February 2018}} Dietary sources Four major food oils (palm, soybean, rapeseed, and sunflower) provide more than 100 million metric tons annually, providing more than 32 million metric tons of omega-6 linoleic acid and 4 million metric tons of omega-3 alpha-linolenic acid.[36] Dietary sources of omega-6 fatty acids include:[37] - poultry
- eggs
- nuts
- hulled sesame seeds
- cereals
- durum wheat
- whole-grain breads
- most vegetable oils
- grape seed oil
- evening primrose oil
- borage oil
- blackcurrant seed oil
- flax/linseed oil
- rapeseed or canola oil
- hemp oil
- soybean oil
- cottonseed oil
- sunflower seed oil
- corn oil
- safflower oil
- pumpkin seeds
See also- Essential fatty acid interactions
- Essential nutrients
- Linolenic acid
- Omega-3 fatty acid
- Omega-7 fatty acid
- Omega-9 fatty acid
- Wheat germ oil
- Lipid peroxidation
- Inflammation
- Cattle feeding
- Olive oil regulation and adulteration
- Ratio of fatty acids in different foods
Notes and references 1. ^{{cite book |last=Chow |first=Ching Kuang |oclc=25508943 |title=Fatty Acids in Foods and Their Health Implications |publisher=Routledge Publishing |location=New York |year=2001}}{{page needed|date=July 2013}} 2. ^{{cite journal | pmid = 20354260| title = Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids| journal = Postepy higieny i medycyny doswiadczalnej (Online)| volume = 64| pages = 115–32| year = 2010| last1 = JZ| first1 = Nowak}} 3. ^1 {{Cite journal|last1 = Bibus|first1 = Doug|last2 = Lands|first2 = Bill|title = Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids|doi = 10.1016/j.plefa.2015.04.005|date = April 18, 2015|pmid = 26002802|volume=99|journal=Prostaglandins Leukot. Essent. Fatty Acids|pages=19–23}} 4. ^{{cite journal |doi=10.1161/ATVBAHA.110.207449 |title=Prostaglandins and inflammation. |year=2011 |last1=Ricciotti |first1=Emanuela |last2=FitzGerald, |first2=Garret A. |journal=American Heart Association Journal |volume=31 |issue=5 |pages=986–1000 |pmid=21508345 |pmc=3081099}} 5. ^{{cite journal |doi=10.1165/rcmb.2008-0105OC |title=Regulation of COX-2 Expression and IL-6 Release by Particulate Matter in Airway Epithelial Cells |year=2009 |last1=Zhao |first1=Yutong |last2=Usatyuk |first2=Peter V. |last3=Gorshkova |first3=Irina A. |last4=He |first4=Donghong |last5=Wang |first5=Ting |last6=Moreno-Vinasco |first6=Liliana |last7=Geyh |first7=Alison S. |last8=Breysse |first8=Patrick N. |last9=Samet |first9=Jonathan M. |last10=Spannhake |first10=Ernst Wm. |last11=Garcia |first11=Joe G.N. |last12=Natarajan |first12=Viswanathan |journal=American Journal of Respiratory Cell and Molecular Biology |volume=40 |pages=19–30 |pmid=18617679 |issue=1 |display-authors=8 }} 6. ^{{cite journal |doi=10.1080/01926230490520232 |title=Brain Inflammation and Alzheimer's-Like Pathology in Individuals Exposed to Severe Air Pollution |year=2004 |last1=Calderón-Garcidueñas |first1=Lilian |last2=Reed |first2=William |last3=Maronpot |first3=Robert |last4=Henriquez-Roldán |first4=Carlos |last5=Delgado-Chavez |first5=Ricardo |last6=Carlos Henriquez-Roldán |first6=Ana |last7=Dragustinovis |first7=Irma |last8=Franco-Lira |first8=Maricela |last9=Aragón-Flores |first9=Mariana |last10=Solt |first10=Anna |last11=Altenburg |first11=Michael |last12=Torres-Jardón |first12=Ricardo |last13=Swenberg |first13=James |journal=Toxicologic Pathology |volume=32 |issue=6 |pages=650–58 |pmid=15513908 |display-authors=8 }} 7. ^{{cite journal |first1=Dimitrios |last1=Moraitis |first2=Baoheng |last2=Du |first3=Mariana S. |last3=De Lorenzo |first4=Jay O. |last4=Boyle |first5=Babette B. |last5=Weksler |first6=Erik G. |last6=Cohen |first7=John F. |last7=Carew |first8=Nasser K. |last8=Altorki |first9=Levy |last10=Subbaramaiah |first10=K |last11=Dannenberg |first11=A.J. |last9=Kopelovich |title=Levels of Cyclooxygenase-2 Are Increased in the Oral Mucosa of Smokers: Evidence for the Role of Epidermal Growth Factor Receptor and Its Ligands |journal=Cancer Research |pmid=15695412 |url=http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=15695412 |year=2005 |volume=65 |issue=2 |pages=664–70 |display-authors=8 }} 8. ^{{cite journal |doi=10.1152/ajplung.00151.2009 |title=Cigarette smoke extract induces COX-2 expression via a PKCα/c-Src/EGFR, PDGFR/PI3K/Akt/NF-κB pathway and p300 in tracheal smooth muscle cells |year=2009 |last1=Yang |first1=Chuen-Mao |last2=Lee |first2=I-Ta |last3=Lin |first3=Chih-Chung |last4=Yang |first4=Ya-Lin |last5=Luo |first5=Shue-Fen |last6=Kou |first6=Yu Ru |last7=Hsiao |first7=Li-Der |journal=American Journal of Physiology. Lung Cellular and Molecular Physiology |volume=297 |issue=5 |pages=L892–902 |pmid=19717552}} 9. ^{{cite journal |doi=10.1152/ajplung.00239.2003 |title=Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: Implications for lung inflammation and cancer |year=2004 |last1=Martey |first1=Christine A. |last2=Stephen J. |first2=Pollock |last3=Chantal K. |first3=Turner |last4=Katherine M.A. |first4=O'Reilly |last5=Carolyn J. |first5=Baglole |last6=Richard P. |first6=Phipps |last7=Patricia J. |first7=Sime |journal=American Journal of Physiology. Lung Cellular and Molecular Physiology |volume=287 |issue=5 |pages=L981–91 |pmid=15234907}} 10. ^{{cite journal |doi=10.1074/jbc.M111.327874 |title=Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes |year=2012 |last1=Font-Nieves |first1=Miriam |last2=Sans-Fons |first2=M. Glòria |last3=Gorina |first3=Roser |last4=Bonfill-Teixidor |first4=Ester |last5=Salas-Pérdomo |first5=Angélica |last6=Márquez-Kisinousky |first6=Leonardo |last7=Santalucia |first7=Tomàs |last8=M. Planas |first8=Anna |journal= The Journal of Biological Chemistry |volume=287 |issue=9 |pages=6454–68 |pmid=22219191 |pmc=3307308}} 11. ^{{cite journal |doi=10.3164/jcbn.12-110 |title=A lipid peroxidation product 9-oxononanoic acid induces phospholipase A2 activity and thromboxane A2 production in human blood |year=2013 |last1=Ren |first1=Rendong |last2=Hashimoto |first2=Takashi |last3=Mizuno |first3=Masashi |last4=Takigawa |first4=Hirosato |last5=Yoshida |first5=Masaru |last6=Azuma |first6=Takeshi |last7=Kanazawa |first7=Kazuki |journal=Journal of Clinical Biochemistry and Nutrition |volume=52 |issue=3 |pages=228–33 |pmid=23704812 |pmc=3652295}} 12. ^{{cite journal |doi=10.1007/s12011-015-0234-6 |title=The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages |year=2015 |last1=Olszowski |first1=Tomasz |journal=Biological Trace Element Research |volume=165 |issue=2 |pages=135–44 |pmid=25645360 |pmc=4424267}} 13. ^{{cite journal |doi=10.1177/0748233711427048 |title=Mercury induces the expression of cyclooxygenase-2 and inducible nitric oxide synthase |year=2011 |last1=Sun Youn |first1=Hyung |journal=Biomedical Laboratory Science |volume=29 |issue=2 |pages=169–74 |pmid=22080037}} 14. ^{{cite journal |doi=10.1016/j.tox.2014.08.012 |title=Lead induces COX-2 expression in glial cells in a NFAT-dependent, AP-1/NFκB-independent manner |year=2014 |last1=Wei |first1=Jinlong |journal=Toxicology |volume=325 |pages=67–73 |pmid=25193092 |pmc=4238429}} 15. ^{{cite journal |doi=10.1289/ehp.1307545 |title=Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. |year=2014 |last1=J |first1=He |journal=Environ Health Perspect |volume=122 |issue=1 |pages=255–61 |pmid=24413338 |pmc=3948041}} 16. ^{{cite journal |doi=10.1196/annals.1323.028 |title=Dietary Fat and Health: The Evidence and the Politics of Prevention: Careful Use of Dietary Fats Can Improve Life and Prevent Disease |year=2005 |last1=Lands |first1=W. E. M. |journal=Annals of the New York Academy of Sciences |volume=1055 |pages=179–92 |pmid=16387724|bibcode=2005NYASA1055..179L }} 17. ^{{cite journal |first1=Joseph R |last1=Hibbeln |first2=Levi RG |last2=Nieminen |first3=Tanya L |last3=Blasbalg |first4=Jessica A |last4=Riggs |first5=William EM |last5=Lands |title=Healthy intakes of n−3 and n−6 fatty acids: estimations considering worldwide diversity |journal=The American Journal of Clinical Nutrition |pmid=16841858 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=16841858 |year=2006 |volume=83 |issue=6 Suppl |pages=1483S–93S}} 18. ^{{cite book |doi=10.1159/000097809 |chapter=ω3 Fatty Acids Effectively Prevent Coronary Heart Disease and Other Late-Onset Diseases – The Excessive Linoleic Acid Syndrome |title=Prevention of Coronary Heart Disease |series=World Review of Nutrition and Dietetics |year=2006 |last1=Okuyama |first1=H. |last2=Ichikawa |first2=Y. |last3=Sun |first3=Y. |last4=Hamazaki |first4=T. |last5=Lands |first5=W. E. M. |isbn=3-8055-8179-3 |pages=83–103 |pmid=17167282 |editor1-last=Okuyama |editor1-first=H.}} 19. ^1 {{cite journal|last1=Aune|first1=D|last2=Keum|first2=N|last3=Giovannucci|first3=E|last4=Fadnes|first4=LT|last5=Boffetta|first5=P|last6=Greenwood|first6=DC|last7=Tonstad|first7=S|last8=Vatten|first8=LJ|last9=Riboli|first9=E|last10=Norat|first10=T|title=Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies.|journal=BMC Medicine|date=5 December 2016|volume=14|issue=1|pages=207|pmid=27916000|doi=10.1186/s12916-016-0730-3|pmc=5137221}} 20. ^{{cite journal|last1=Luo|first1=C|last2=Zhang|first2=Y|last3=Ding|first3=Y|last4=Shan|first4=Z|last5=Chen|first5=S|last6=Yu|first6=M|last7=Hu|first7=FB|last8=Liu|first8=L|title=Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis.|journal=The American Journal of Clinical Nutrition|date=July 2014|volume=100|issue=1|pages=256–69|pmid=24847854|doi=10.3945/ajcn.113.076109}} 21. ^{{cite web |url=https://www.nytimes.com/2017/11/16/well/eat/nuts-may-lower-your-risk-for-heart-disease.html?rref=collection%2Fsectioncollection%2Fhealth&action=click&contentCollection=health®ion=stream&module=stream_unit&version=latest&contentPlacement=3&pgtype=sectionfront |title=Nuts May Lower Your Risk for Heart Disease |date= November 16, 2017 |access-date= November 19, 2017 |work=New York Times |last=Bakalar |first=Nicholas}} 22. ^{{cite journal|last1=Huang|first1=Yunying|last2=Zheng|first2=Sichao|last3=Wang|first3=Tenghua|last4=Yang|first4=Xin|last5=Luo|first5=Qian|last6=Li|first6=Hangshan|title=Effect of oral nut supplementation on endothelium-dependent vasodilation – a meta-analysis|journal=Vasa|volume=47|issue=3|year=2018|pages=203–207|issn=0301-1526|doi=10.1024/0301-1526/a000693}} 23. ^{{cite book|authorlink= William EM Lands | last = Lands | first = WEM |title=Fish, Omega 3 and human health | year = 2005 | publisher= American Oil Chemists' Society |isbn=978-1-893997-81-3}}{{page needed|date=July 2013}} 24. ^{{cite book |doi=10.1159/000073788 |chapter=Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids: Evolutionary Aspects |chapterurl=https://books.google.com/books?id=_0PWAie_YIkC&pg=PA1 |title=Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence |series=World Review of Nutrition and Dietetics |year=2003 |last1=Simopoulos |first1=A.P. |isbn=3-8055-7640-4 |volume=92 |pages=1–22 |pmid=14579680 |editor1-last=Simopoulos |editor1-first=Artemis P. |editor2-last=Cleland |editor2-first=Leslie G.}} 25. ^{{cite journal |doi=10.1016/j.tibs.2007.09.013 |title=Nutritionally essential fatty acids and biologically indispensable cyclooxygenases |year=2008 |last1=Smith |first1=William L. |journal=Trends in Biochemical Sciences |volume=33 |pages=27–37 |pmid=18155912 |issue=1}} 26. ^{{cite journal |doi=10.1074/jbc.M703169200 |title=Enzymes and Receptors of Prostaglandin Pathways with Arachidonic Acid-derived Versus Eicosapentaenoic Acid-derived Substrates and Products |year=2007 |last1=Wada |first1=M. |last2=Delong |first2=C. J. |last3=Hong |first3=Y. H. |last4=Rieke |first4=C. J. |last5=Song |first5=I. |last6=Sidhu |first6=R. S. |last7=Yuan |first7=C. |last8=Warnock |first8=M. |last9=Schmaier |first9=A. H. |last10=Yokoyama |first10=C. |last11=Smyth |first11=E. M. |last12=Wilson |first12=S. J. |last13=Fitzgerald |first13=G. A. |last14=Garavito |first14=R. M. |last15=Sui |first15=D. X. |last16=Regan |first16=J. W. |last17=Smith |first17=W. L. |journal=Journal of Biological Chemistry |volume=282 |issue=31 |pages=22254–66 |pmid=17519235 |display-authors=8 }} 27. ^{{cite journal |doi=10.1081/JAS-62950 |title=Dietary Omega-3 Polyunsaturated Fatty Acid Supplementation and Airway Hyperresponsiveness in Asthma |year=2005 |last1=Mickleborough |first1=Timothy |journal=Journal of Asthma |volume=42 |issue=5 |pages=305–14 |pmid=16036405}} 28. ^{{cite journal |pmid=9094887 |url=http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=9094887 |title=Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production |date=1997-04-01 |author1=KS Broughton |journal=The American Journal of Clinical Nutrition |volume=65 |issue=4 |pages=1011–17 |last2=Johnson |first2=CS |last3=Pace |first3=BK |last4=Liebman |first4=M |last5=Kleppinger |first5=KM}} 29. ^{{cite journal |doi=10.1002/ijc.23394 |title=Do both heterocyclic amines and omega-6 polyunsaturated fatty acids contribute to the incidence of breast cancer in postmenopausal women of the Malmö diet and cancer cohort? |year=2008 |last1=Sonestedt |first1=Emily |last2=Ericson |first2=Ulrika |last3=Gullberg |first3=Bo |last4=Skog |first4=Kerstin |last5=Olsson |first5=Håkan |last6=Wirfält |first6=Elisabet |journal=International Journal of Cancer |volume=123 |issue=7 |pages=1637–43 |pmid=18636564}} 30. ^{{cite journal |author=Yong Q. Chen, at al |title=Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids |journal=The Journal of Clinical Investigation |volume=117 |issue=7 |year=2007 |doi=10.1172/JCI31494|pages= 1866–75 |pmid=17607361 |pmc=1890998|last2=Min |last3=Wu |last4=Wu |last5=Perry |last6=Cline |last7=Thomas |last8=Thornburg |last9=Kulik |last10=Smith |last11=Edwards |last12=d'Agostino |last13=Zhang |last14=Wu |last15=Kang |last16=Chen }} 31. ^{{cite journal |doi=10.1093/jnci/93.14.1088 |title=Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: A Prospective Italian Study |year=2001 |last1=Pala |first1=Valeria |last2=Krogh |first2=Vittorio |last3=Muti |first3=Paola |last4=Chajès |first4=Véronique |last5=Riboli |first5=Elio |last6=Micheli |first6=Andrea |last7=Saadatian |first7=Mitra |last8=Sieri |first8=Sabina |last9=Berrino |first9=Franco |journal=Journal of the National Cancer Institute |volume=93 |issue=14 |pages=1088–95 |pmid=11459870 }} 32. ^1 {{cite journal|last1=Simopoulos|first1=A.P|title=Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases|journal=Biomedicine & Pharmacotherapy|date=28 July 2006|volume=60|issue=9|pages=502–07|url=http://www.nutrasource.ca/files/omega_3_chronic_nov2006.pdf|accessdate=8 February 2015|doi=10.1016/j.biopha.2006.07.080}} 33. ^1 {{cite journal|last1=Doyle|first1=Cynthia|last2=Abbott|first2=Amber|last3=Doyle|first3=Patrick|last4=Nader|first4=Glenn|last5=Larson|first5=Stephanie|title=A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef|journal=Nutrition Journal|volume=9|issue=1|page=10|pmc=2846864|doi=10.1186/1475-2891-9-10|year=2010|pmid=20219103}} 34. ^{{cite journal|last1=Ponnampalam|first1=Eric|last2=Mann|first2=Neil|last3=Sinclair|first3=Andrew|title=Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on human health|journal=Asia Pac J Clin Nutr|date=2006|volume=15|issue=1|pages=21–29|url=http://apjcn.nhri.org.tw/server/APJCN/15/1/21.pdf|accessdate=8 February 2015|pmid=16500874}} 35. ^{{cite journal |doi=10.1016/S0163-7827(03)00038-9 |title=Problems with essential fatty acids: Time for a new paradigm? |year=2003 |last1=Cunnane |first1=Stephen C. |journal=Progress in Lipid Research |volume=42 |issue=6 |pages=544–68 |pmid=14559071}} 36. ^{{cite journal |last1=Gunstone |first1=Frank |date=December 2007 |title=Market update: Palm oil |journal=International News on Fats, Oils and Related Materials |volume=18 |issue=12 |pages=835–36 |url=http://www.highbeam.com/doc/1P3-1421893231.html|archive-url=https://web.archive.org/web/20130403202146/http://www.highbeam.com/doc/1P3-1421893231.html|dead-url=yes|archive-date=2013-04-03}} 37. ^{{cite web | title = Food sources of total omega 6 fatty acids | work = | url = http://riskfactor.cancer.gov/diet/foodsources/fatty_acids/table2.html | accessdate = 2011-09-04}}
Additional sources | first = Steve | last = Tokar | title = Omega-6 fatty acids cause prostate tumor cell growth in culture | url = http://www.medicalnewstoday.com/articles/29976.php | work = Medical News Today | publisher = MediLexicon International | date = 2005-09-02 | accessdate = 2008-03-23}} | title = Brain fatty acid levels linked to depression | url = http://www.news-medical.net/?id=10398 | work = News-Medical.Net | publisher = AZoNetwork | date = 2005-05-25 | accessdate = 2008-03-23}} | last = Tribole | first = E.F. | title = Excess Omega-6 Fats Thwart Health Benefits from Omega-3 Fats | journal = British Medical Journal Rapid Responses to Hooper, et al., 2006 | volume = 332 | issue = 7544 | pages = 752 | url = http://www.bmj.com/rapid-response/2011/10/31/excess-omega-6-fats-thwart-health-benefits-omega-3-fats | date = 2006-03-27 |doi= | accessdate = 2008-03-23}} |isbn=978-0-920470-38-1 |title=Fats That Heal, Fats That Kill |first=Udo |last=Erasmus |edition=3rd |location=Burnaby (BC) |publisher=Alive Books |year=1993}}{{Lipids}}{{DEFAULTSORT:Omega-6 Fatty Acid}}Omega-n-Fettsäuren#Omega-6-Fettsäuren 4 : Fatty acids|Essential nutrients|Treatment of bipolar disorder|Alkenoic acids |