词条 | Atrop-abyssomicin C |
释义 |
| ImageFile = File:Atrop aby c.png | ImageSize = 190px | IUPACName = 12,14a,3-(Epoxymethyno)-2H-1-benzoxacyclododecin-2,4,8(5H,10aH)-trione, 6,7,11,12,13,14-hexahydro-11-hydroxy-5,7,13-trimethyl-, (5R,7S,9E,10aR,11R,12R,13R,14aR) | OtherNames = Atrop-abyssomicin C |Section1={{Chembox Identifiers | CASNo = 725254-09-1 | PubChem = | ChemSpiderID = | ChEMBL = 2204369 | SMILES = C[C@@H]1C[C@]23OC(=O)C4=C2OC1[C@H](O)C3\\C=C\\C(=O)[C@@H](C)C[C@@H](C)C4=O | InChI = | InChIKey = | StdInChI = 1S/C19H22O6/c1-8-6-9(2)14(21)13-17-19(25-18(13)23)7-10(3)16(24-17)15(22)11(19)4-5-12(8)20/h4-5,8-11,15-16,22H,6-7H2,1-3H3/b5-4+/t8-,9+,10+,11?,15+,16?,19+/m0/s1 | StdInChIKey = FNEADFUPWHAVTA-WDQYZCCLSA-N |Section2={{Chembox Properties | Formula = C19H22O6 | MolarMass = 346.38 g/mol | Appearance = | Density = 1.34±0.1 g/cm3 (Predicted) | MeltingPt = 180 °C (decomp) | BoilingPt = 597.5±50.0 °C (Predicted) | Solubility = |Section3={{Chembox Hazards | MainHazards = | FlashPt = | AutoignitionPt = }}Atrop-abyssomicin C is a polycyclic polyketide-type natural product that is the atropisomer of abyssomicin C. It is a spirotetronate that belongs to the class of tetronate antibiotics, which includes compounds such as tetronomycin, agglomerin, and chlorothricin.[1] In 2006, the Nicolaou group discovered atrop-abyssomicin C while working on the total synthesis of abyssomicin C.[2] Then in 2007, Süssmuth and co-workers isolated atrop-abyssomicin C from Verrucosispora maris AB-18-032, a marine actinomycete found in sediment of the Japanese sea. They found that atrop-abyssomicin C was the major metabolite produced by this strain, while abyssomicin C was a minor product. The molecule displays antibacterial activity by inhibiting the enzyme PabB (4-amino-4-deoxychorismate synthase), thereby depleting the biosynthesis of p-aminobenzoate.[3][4] StructureAtrop-abyssomicin C has a complex, yet intriguing structural topography. The compound contains a oxabicyclo[2.2.2]octane system fused to the tetronate moiety. The 11-membered macrocyclic ring carries an α,β-unsaturated ketone that was proposed to be the reactive center.[5] Despite being a strained macrocycle, there exist an atropisomer, abyssomicin C. The atropisomerism arise due to a structural deviation in the α,β-unsaturated ketone region of the molecule. The orientation of the carbonyl in atrop-abyssomicin C is cisoid, whereas the conformation in abyssomicin C is transoid.[6] The enone moiety of atrop-abyssomicin C has a higher degree of the conjugation, which makes it a more active Michael acceptor.[7]BiosynthesisThe biosynthesis of atrop-abyssomicin C begins with the synthesis of a linear polyketide chain in a PKS I system that consist of one loading and six extension modules. The polyketide chain is made from five acetates, two propionates, and the glycolytic pathway metabolite. D-1,3-bisphosphoglycerate, the glycolytic metabolite, is transferred to AbyA3 (an acyl-carrier protein) by AbyA2 to generate the glyceryl-ACP. AbyA1 facilitates the attachment of the glyceryl-ACP to the polyketide chain and the detachment of the polyketide from the polyketide synthase to form intermediate 2.[7][8][9] Based on the observation made for the biosynthesis of agglomerin, it has been proposed that AbyA4 acetylates intermediate 2 and AbyA5 catalyzes the elimination of acetic acid to form the exocyclic double bond in intermediate 4.[1] An intramolecular Diels-Alder was proposed to take place between the exocyclic olefin and the conjugated diene at the tail end of the polyketide to form the macrocyclic ring.[7] It has been reported that the previously unidentified Abycyc gene could code for an enzyme that carries out the Diels-Alder cycloaddition.[10] Following the Diels-Alder reaction, an epoxide ring is formed and then opened by the tetronate hydroxyl group to form atrop-abyssomicin C. It has been postulated that the AbyE monooxygenase catalyzes epoxide formation.[8] References1. ^1 {{cite journal|last=Kanchanabanca|first=C. |author2=Tao, W. |author3=Hong, H. |author4=Liu, Y. |author5=Hanh, F. |author6=Samborskyy, M. |author7=Deng, Z. |author8=Sun, Y. |author9=Leadlay, P.F. |journal= Angewandte Chemie International Edition|year=2013|volume=52|pages=5785–8|doi= 10.1002/anie.201301680|pmid=23606658|title=Unusual acetylation-elimination in the formation of tetronate antibiotics|issue=22}} 2. ^{{cite journal|last=Nicolaou|first=K.C.|author2=Harrison, S.T.|journal= Angewandte Chemie International Edition|year=2006|volume=45|pages=3256–60|doi=10.1002/anie.200601116|pmid=16634106|title=Total Synthesis of Abyssomicin C and atrop-Abyssomicin C**|issue=20}} 3. ^{{cite journal|last=Keller|first=S. |author2=Nicholson, G. |author3=Drahl, C. |author4=Sorensen, E. |author5=Fiedler, H.P. |author6=Süssmuth, R.D.|journal= Journal of Antibiotics|year=2007|volume=60|pages=391–4|doi=10.1038/ja.2007.54|pmid=17617698|title=Abyssomicins G and H and atrop-abyssomicin C from the marine Verrucosispora strain AB-18-032|issue=6}} 4. ^{{Cite journal|url = |title = Action of atrop-abyssomicin C as an inhibitor of 4-amino-4-deoxychorismate synthase PabB|vauthors=Keller S, Schadt HS, Ortel I, Süssmuth RD |date = 2007|journal = Angew. Chem. Int. Ed. Engl.|doi = 10.1002/anie.200701836|pmid = 17886307|access-date =|volume=46|pages=8284–6}} 5. ^{{cite journal|last=Nicolaou|first=K.C. |author2=Harrison, S.T. |author3=Chen, J.S.|journal= Synthesis|year=2009|volume=2009|pages=33–42|doi=10.1055/s-0028-1083259|pmid=20047014|title=Discoveries from the Abyss: The Abyssomicins and Their Total Synthesis|issue=1|pmc=2677807}} 6. ^{{cite journal|last=Nicolaou|first=K.C.|author2=Harrison, S.T.|journal= Journal of the American Chemical Society|year=2007|volume=129|pages=429–40|doi=10.1021/ja067083p|pmid=17212423|title=Total synthesis of abyssomicin C, atrop-abyssomicin C, and abyssomicin D: implications for natural origins of atrop-abyssomicin C|issue=2}} 7. ^1 2 {{cite journal|last= Savic|first=V.|journal= Studies in Natural Products Chemistry|year=2013|volume=40|pages=133–172|doi= 10.1016/B978-0-444-59603-1.00005-9|title=Chapter 5 – Abyssomicins: Isolation, Properties, and Synthesis}} 8. ^1 {{cite journal|last=Gottardi|first=E |author2=Krawczyk, J. |author3=von Suchodoletz, H. |author4=Schadt, S. |author5=Mühlenweg, A. |author6=Uguru, G. |author7=Süssmuth, R.D. |journal= ChemBioChem|year=2011|volume=12|pages=1401–1410|doi=10.1002/cbic.201100172|pmid=21656887|title=Abyssomicin Biosynthesis: Formation of an Unusual Polyketide, Antibiotic‐Feeding Studies and Genetic Analysis|issue=9 |pmc=3625739}} 9. ^{{cite journal|last=Vieweg|first=L. |author2=Reichau, S. |author3=Schobert, R |author4=Leadlay, P.F. |author5=Süssmuth, R. |journal= Natural Product Reports|year=2014|volume=31|pages=1554–1584|doi=10.1039/c4np00015c|pmid=24965099|title=Recent advances in the field of bioactive tetronates|issue=11}} 10. ^{{cite journal|last=Hashimoto|first=T. |author2=Hashimoto, J. |author3=Teruya, K. |author4=Hirano, T. |author5=Shin-ya, K. |author6=Ikeda, H. |author7=Liu, H.W. |author8=Nishiyama, M. |author9=Kuzuyama T. |journal= Journal of the American Chemical Society|year=2015|volume=137|pages=572–5|doi= 10.1021/ja510711x|pmid=25551461|title=Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides|issue=2 |pmc=4308742}} 3 : Antibiotics|Ketones|Lactones |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。