词条 | Paragonimus westermani |
释义 |
| image = Paragonimus westermani.png | image_caption = An adult specimen stained with carmine | genus = Paragonimus | species = westermani | authority = Kerbert, 1878[1] | subdivision_ranks = Subspecies | subdivision = P. westermani filipinus P. westermani ichunencis P. westermani japonicus P. westermani westermani }} Paragonimus westermani is the major species of lung fluke that infects humans, causing paragonimiasis. The species sometimes is called the Japanese lung fluke or oriental lung fluke. Human infections are most common in eastern Asia and in South America. Paragonimus westermani was discovered when two Bengal tigers died of paragonimiasis in zoos in Europe in 1878. Several years later, infections in humans were recognised in Formosa. IntroductionParagonimiasis is a food-borne parasitic infection caused by the lung fluke. It may cause a sub-acute to chronic inflammatory disease of the lung. It is one of the most familiar lung flukes with the widest geographical range. It was discovered by Coenraad Kerbert (1849–1927) in 1878. Causative agentMore than 30 species of trematodes (flukes) of the genus Paragonimus have been reported to infect animals and humans. Among the more than 10 species reported to infect humans, the most common is Paragonimus westermani, the oriental lung fluke.[2][3] MorphologyIn size, shape, and color, Paragonimus westermani resembles a coffee bean when alive. Adult worms are 7.5 mm to 12 mm long and 4 mm to 6 mm wide. The thickness ranges from 3.5 mm to 5 mm. The skin of the worm (tegument) is thickly covered with scalelike spines. The oral and ventral suckers are similar in size, with the latter placed slightly pre-equatorially. The excretory bladder extends from the posterior end to the pharynx. The lobed testes are adjacent from each other located at the posterior end, and the lobed ovaries are off-centered near the center of the worm (slightly postacetabular). The uterus is located in a tight coil to the right of the acetabulum, which is connected to the vas deferens. The vitelline glands, which produce the yolk for the eggs, are widespread in the lateral field from the pharynx to the posterior end. Inspection of the tegumental spines and shape of the metacercariae may distinguish between the 30-odd species of Paragonimus spp. but the distinction is sufficiently difficult to justify suspicion that many of the described species are synonyms.[2]
History of discoveryP. westermani was discovered in the lungs of a human by Ringer in 1879[6] and eggs in the sputum were recognized independently by Manson and Erwin von Baelz in 1880.[6] Manson proposed the snail as an intermediate host and various Japanese workers detailed the whole life cycle in the snail between 1916 and 1922.[9] The species name P. westermani was named after Pieter Westerman (1859–1925) a zookeeper who noted the trematode in a Bengal tiger in an Amsterdam Zoo[Artis].[10]Life cycleUnembryonated eggs are passed in the sputum of a human or feline. Two weeks later, miracidia develop in the egg and hatches. The miracidia penetrate its first intermediate host (snail). Within the snail mother sporocyst form and produce many mother rediae, which subsequently produce many daughter rediae which shed crawling cercariae into fresh water. The crawling cercariae penetrate fresh water crabs and encyst in its muscles becoming metacercaria. Humans or felines then eat the infected crabs raw. Once eaten, the metacercaria excysts and penetrates the gut, diaphragm and lung where it becomes an adult worm in pairs. The first intermediate hosts of the Paragonimus westermani are freshwater snails:
For many years Tarebia granifera was believed[3] to be an intermediate host for the Paragonimus westermani, but Michelson showed in 1992 that this was erroneous.[4][25] Paragonimus has a quite complex life-cycle that involves two intermediate hosts as well as humans. Eggs first develop in water after being expelled by coughing (unembryonated) or being passed in human feces. In the external environment, the eggs become embryonated. In the next stage, the parasite miracidia hatch and invades the first intermediate host such as a species of freshwater snail. Miracidia penetrate its soft tissues and go through several developmental stages inside the snail but mature into cercariae in 3 to 5 months. Cercariae next invade the second intermediate host such as crabs or crayfish and encyst to develop into metacercariae within 2 months. Infection of humans or other mammals (definitive hosts) occurs via consumption of raw or undercooked crustaceans. Human infection with P. westermani occurs by eating inadequately cooked or pickled crab or crayfish that harbor metacercariae of the parasite. The metacercariae excyst in the duodenum, penetrate through the intestinal wall into the peritoneal cavity, then through the abdominal wall and diaphragm into the lungs, where they become encapsulated and develop into adults. The worms can also reach other organs and tissues, such as the brain and striated muscles, respectively. However, when this takes place completion of the life cycles is not achieved, because the eggs laid cannot exit these sites.[3]EpidemiologyReservoir hosts of Paragonimus spp. include numerous species of carnivores including felids, canids, viverrids, mustelids, some rodents and pigs. Humans become infected after eating raw freshwater crabs or crayfish that have been encysted with the metacerciaria. Southeast Asia is more predominately more infected because of lifestyles. Raw seafood is popular in these countries. Crab collectors string raw crabs together and bring them miles inland to sell in Taiwan markets. These raw crabs are then marinated or pickled in vinegar or wine to coagulate the crustacean muscle. This method of preparation does not kill the metacercariae, consequently infecting the host. Smashing rice-eating crabs in rice paddies, splashing juices containing metacercariae, can also transmit the parasite, or using juices strained from fresh crabs for medicinal uses. This parasite is easily spread because it is able to infect other animals (zoonosis). An assortment of mammals and birds can be infected and act as paratenic hosts. Ingestion of the paratenic host can lead to infection of this parasite. Paragonimus westermani is distributed in southeast Asia and Japan. Other species of Paragonimus are common in parts of Asia, Africa and South and Central America. P. westermani has been increasingly recognized in the United States during the past 15 years because of the increase of immigrants from endemic areas such as Southeast Asia. Estimated to infect 22 million people worldwide.[3]TransmissionTransmission of the parasite P. westermani to humans and mammals primarily occurs through the consumption of raw or undercooked seafood. In Asia, an estimated 80% of freshwater crabs carry P. westermani.[28] In preparation, live crabs are crushed and metacercariae may contaminate the fingers/utensils of the person preparing the meal. Accidental transfer of infective cysts can occur via food preparers who handle raw seafood and subsequently contaminate cooking utensils and other foods.[29] Consumption of animals which feed on crustaceans can also transmit the parasite, for cases have been cited in Japan where raw boar meat was the source of human infection.[2][31] Food preparation techniques such as pickling and salting do not exterminate the causative agent. For example, in a Chinese study eating "drunken crabs" was shown to be particularly risky because the infection rate was 100% when crabs are immersed in wine for 3–5 minutes and fed to cats/dog.[2] ReservoirAnimals such as pigs, dogs, and a variety of feline species can also harbor P. westermani.[3] VectorThere is no vector, but various snail and crab species serve as intermediate hosts. In Japan and Korea, the crab species Eriocheir is an important item of food as well as a notable second intermediate host of the parasite.[2] Incubation periodTime from infection to oviposition (laying eggs) is 65 to 90 days. Infections may persist for 20 years in humans.[3] PathologyOnce in the lung or ectopic site, the worm stimulates an inflammatory response that allows it to cover itself in granulation tissue forming a capsule. These capsules can ulcerate and heal over time. The eggs in the surrounding tissue become pseudotubercles. If the worm becomes disseminated and gets into the spinal cord, it can cause paralysis; capsules in the heart can cause death. The symptoms are localized in the pulmonary system, which include a bad cough, bronchitis, and blood in sputum (hemoptysis). DiagnosisDiagnosis is based on microscopic demonstration of eggs in stool or sputum, but these are not present until 2 to 3 months after infection. However, eggs are also occasionally encountered in effusion fluid or biopsy material. Furthermore, you can use morphologic comparisons with other intestinal parasites to diagnose potential causative agents. Finally, antibody detection is useful in light infections and in the diagnosis of extrapulmonary paragonimiasis. In the United States, detection of antibodies to Paragonimus westermani has helped physicians differentiate paragonimiasis from tuberculosis in Indochinese immigrants.[3] Additionally, radiological methods can be used to X-ray the chest cavity and look for worms. This method is easily misdiagnosed, because pulmonary infections look like tuberculosis, pneumonia, or spirochaetosis. A lung biopsy can also be used to diagnose this parasite. Management and treatmentAccording to the CDC, praziquantel is the drug of choice to treat paragonimiasis.[3] The recommended dosage of 75 mg/kg per day, divided into 3 doses over 3 days has proven to eliminate P. westermani.[28] Bithionol is an alternative drug for treatment of this disease but is associated with skin rashes and urticaria. For additional information, see the recommendations in The Medical Letter (Drugs for Parasitic Infections). Clinical presentation in humansCase study:[39]
Human infection with Paragonimus may cause acute or chronic symptoms, and manifestations may be either pulmonary or extrapulmonary.[40] Acute symptoms: The acute phase (invasion and migration) may be marked by diarrhea, abdominal pain, fever, cough, urticaria, hepatosplenomegaly, pulmonary abnormalities, and eosinophilia.[3] The acute stage corresponds to the period of invasion and migration of flukes and consists of abdominal pain, diarrhea and urticaria, followed roughly 1 to 2 weeks later by fever, pleuritic chest pain, cough and/or dyspnea.[39] Chronic Symptoms: During the chronic phase, pulmonary manifestations include cough, expectoration of discolored sputum, hemoptysis, and chest radiographic abnormalities.[3] Chronic pulmonary paragonimiasis, the most common clinical pattern, is frequently mild, with chronic cough, brown-tinged sputum (the color being caused by expectorated clusters of reddish brown eggs rather than by blood) and true hemoptysis.[39] Confusion with tuberculosisPractitioners should always consider the possibility of tuberculosis in patients with fevers, cough, and weight loss. However, in endemic areas it is prudent to consider paragonimiasis as well. Flukes occasionally cause confusion when they invade the pleural space without entering the lung parenchyma.[45][46][47]
In pleural paragonimiasis, symptoms may be minimal and diagnosis complicated, since ova are not coughed or spit out or swallowed and there is frequently no cough. Such patients may develop pleural effusions and, because of the coendemicity with Mycobacterium tuberculosis (and co-infection in some patients), such effusions are often misdiagnosed as isolated tuberculosis.[48][49]
Extra-pulmonary locations of the adult worms result in more severe manifestations, especially when the brain is involved. Extra-pulmonary paragonimiasis is rarely seen in humans, as the worms nearly exclusively migrate to the lungs. Despite this, cysts can develop in the brain and abdominal adhesions resulting from infection have been reported. Cysts may contain living or dead worms; a yellow-brownish thick fluid (occasionally hemorrhagic). When the worm dies or escapes, the cysts gradually shrink, leaving nodules of fibrous tissues and eggs which can calcify.[2] Worldwide the most common cause of hemoptysis is paragonimiasis.[51] Other case studies:
Public health and prevention strategiesPrevention programs should promote more hygienic food preparation by encouraging safer cooking techniques and more sanitary handling of potentially contaminated seafood. The elimination of the first intermediate host, the snail, is not tenable due to the nature of the organisms habits.[2] A key component to prevention is research, more specifically the research of everyday behaviors. This recent study was conducted as a part of a broader effort to determine the status of Paragonimus species infection in Laos.[53] An epidemiological survey was conducted on villagers and schoolchildren in Namback District between 2003 and 2005. Among 308 villagers and 633 primary and secondary schoolchildren, 156 villagers and 92 children had a positive reaction on a Paragonimus skin test. Consequently, several types of crabs were collected from markets and streams in a paragonimiasis endemic area for the inspection of metacercariae and were identified as the second intermediate host of the Paragonimus species. In this case study, we see how high prevalence of paragonimiasis is explained by dietary habits of the population. Amongst schoolchildren, many students reported numerous experiences of eating roast crabs in the field. Adult villagers reported frequent consumption of seasoned crabs (Tan Cheoy Koung) and papaya salad (Tammack Koung) with crushed raw crab. In addition to this characteristic feature of the villagers' food culture, the denizens of this area drink fresh crab juice as a traditional cure for measles, and this was also thought to constitute a route for infection. See also
ReferencesThis article incorporates CC-BY-3.0 text from the reference.[5] 1. ^Kerbert C. (1878). "Zur Trematoden-Kenntniss". Zoologischer Anzeiger 1: 271-273. Artis zoo, Koninklijk Zoölogisch Genootschap. [6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22]2. ^{{cite book |author1=Janovy, John |author2=Schmidt, Gerald D. |author3=Roberts, Larry S. |title=Gerald D. Schmidt & Larry S. Roberts' Foundations of parasitology |publisher=Wm. C. Brown |location=Dubuque, Iowa |year=1996 |pages= |isbn=0-697-26071-2 |oclc= |doi= |accessdate=}} 3. ^1 2 3 4 5 6 7 8 9 10 11 12 World Health Organization (1995). Control of Foodborne Trematode Infection. WHO Technical Report Series. 849. PDF part 1, PDF part 2. page 125-126. 4. ^{{cite journal | author = Michelson E | year = 1992 | title = Thiara granifera: a victim of authoritarianism? | url = | journal = Malacological Review | volume = 25 | issue = | pages = 67–71 }} 5. ^1 Appleton C. C., Forbes A. T.& Demetriades N. T. (2009). "The occurrence, bionomics and potential impacts of the invasive freshwater snail Tarebia granifera (Lamarck, 1822) (Gastropoda: Thiaridae) in South Africa". Zoologische Mededelingen 83. http://www.zoologischemededelingen.nl/83/nr03/a04 6. ^1 2 {{vcite book |author=Muller, R |year=1996 |chapter=Liver and lung flukes |pages=274–285 |editor= Cox FEG |title=The Wellcome Trust illustrated history of tropical diseases |publisher=The Wellcome Trust, London, United Kingdom |url=http://cmr.asm.org/cgi/content/full/15/4/595#R193}} 7. ^1 {{vcite book |author=Grove, DI |year=1990 |title=A history of human helminthology |publisher=CAB International, Wallingford, United Kingdom |url= http://cmr.asm.org/cgi/content/full/15/4/595#R105}} 8. ^1 {{vcite book |author=Desowitz, R |title=New Guinea Tapeworms and Jewish Grandmothers: Tales of Parasites and People |publisher=New York: WW Norton |year=1987 |isbn=978-0-393-30426-8}} 9. ^1 {{vcite journal |author=Chung HL, Ho LY, Hsu CP, Ts'ao WJ |title=Recent progress in studies of Paragonimus and paragonimiasis control in China |journal=Chin Med J |year=1981 |volume=94 |pages=483–494}} 10. ^1 2 3 4 5 6 7 8 9 10 {{vcite web |url=http://www.dpd.cdc.gov/DPDx/html/Frames/MR/Paragonimiasis/body_Paragonimiasis_page2.htm |title=CDC Paragonimiasis}} 11. ^1 2 3 {{vcite journal |author=Heath HW, Marshall SG |title= Pleural Paragonimiasis In A Laotian Child |journal= Pediatric Infectious Disease Journal |volume= 16 | issue = 12 |year=1997 |pages=1182–1185 |url=http://www.pidj.com/pt/re/pidj/abstract.00006454-199712000-00018.htm;jsessionid=JnzNJ8ynh33JPL3GQ1NvLlxh6MJTQMkC7SscXNvPj6p6Yd5QfyZ4!-858031623!181195628!8091!-1 |doi=10.1097/00006454-199712000-00018}} 12. ^1 {{vcite journal |author=Roberts PP |title= Parasitic infections of the pleural space |journal=Semin Respir Infect |year=1988 |volume=3 |pages=362–382}} 13. ^1 {{vcite journal |author=Minh VD, Engle P, Greenwood JR, Prendergast TJ, Salness K, St. Clair R |title=Pleural paragonimiasis in a Southeast Asian refugee |journal=Am Rev Respir Dis |year=1981 |volume=124 |pages=186–188}} 14. ^1 {{vcite journal |author=Johnson JR, Falk A, Iber C, Davies S |title= Paragonimiasis in the United States: a report of nine cases in Hmong immigrants |journal= Chest |year=1982 |volume=82 |pages=168–171 | pmid=7094646 | doi=10.1378/chest.82.2.168 }} 15. ^1 {{vcite journal |author=Johnson RJ, Johnson JR |title=Paragonimiasis in Indochinese refugees: roentgenographic findings and clinical correlations |journal=Am Rev Respir Dis |year=1983 |volume=128 |pages=534–538}} 16. ^1 {{vcite journal |author=Romeo DP, Pollock JJ |title= Pulmonary paragonimiasis: diagnostic value of pleural fluid analysis |journal=South Med J |year= 1986 |volume=79 |pages=241–243 | pmid=3945854 |doi=10.1097/00007611-198602000-00024}} 17. ^1 {{vcite book |author=Davis, GS, Elizabeth AS |editor= Marcy TW |title= Medical Management of Pulmonary Diseases |publisher=CRC Press |year=1999 |page=345}} 18. ^1 2 3 4 5 6 {{vcite book |title=Markell and Voge's Medical Parasitology |edition=9th |year=2006 |page= 200 |isbn=978-0-7216-4793-7}} 19. ^1 {{vcite journal |author=Miyazaki I, Habe S |title= A newly recognized mode of human infection with the lung fluke, Paragonimus westermani. |journal=J Parasitol |year=1976 |volume=62 |pages=646–8 |doi=10.2307/3279438}} 20. ^1 2 {{vcite journal | author=Pachucki, CT, Levandowski, RA, Brown, VA, Sonnenkalb, BH, Vruno, MJ |title= American Paragonimiasis treated with praziquantel |journal= N Engl J Med |year=1984 |volume= 311 |pages=582–583 |doi=10.1056/nejm198408303110906}} 21. ^1 {{vcite journal |author= Yokogawa, M |title= Paragonimus and Paragonimiasis |journal= Adv Parasitol |year=1965 |volume=3 |pages=99–158 |doi=10.1016/s0065-308x(08)60364-4}} 22. ^1 {{vcite journal |author= Song HO, Min DY, Rim HJ, Youthanavanh V, Dalunyi B, Sengdara V, Virasack B, Bounlay P. |title=Skin Test for Paragonimiasis among Schoolchildren and Villagers in Namback District, Luangprabang Province, Lao PDR. |journal=The Korean Journal of Parasitology |year= 2008 |volume= 46|issue=3 |pages=179–82 | doi = 10.3347/kjp.2008.46.3.179 }} }} Further reading
External links{{Commons category|Paragonimus westermani}}
3 : Plagiorchiida|Parasitic helminths of humans|Animals described in 1878 |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。