词条 | Periodate | ||||||||||||||||||||||||||||||
释义 |
| ImageFile1 = Periodat-Ion.svg | ImageSize1 = 120px | ImageAlt1 = The metaperiodate ion | ImageCaption1 = The metaperiodate ion | ImageFile2 = Orthoperiodate.png | ImageSize2 = 120px | ImageAlt2 = The orthoperiodate ion | ImageCaption2 = The orthoperiodate ion | SystematicName = tetraoxoiodate(1−) hexaoxoiodate(5−) | IUPACName = | Section1 = {{Chembox Identifiers | CASNo = 15056-35-6 | CASNo_Comment = (metaperiodate) | PubChem = 167232 | PubChem_Comment = (metaperiodate) | PubChem1 = 6857432 | PubChem1_Comment = (orthoperiodate) | ChemSpiderID = 146311 | ChemSpiderID_Comment = (metaperiodate) | ChemSpiderID1 = 5256770 | ChemSpiderID1_Comment = (orthoperiodate) | SMILES = [O-][I+3]([O-])([O-])[O-] | SMILES_Comment = Metaperiodate | InChI = 1S/HIO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1 | InChI_Comment = metaperiodate | InChIKey = KHIWWQKSHDUIBK-UHFFFAOYSA-M | InChI1 = 1S/H5IO6/c2-1(3,4,5,6)7/h(H5,2,3,4,5,6,7)/p-5 | InChI1_Comment = orthoperiodate | InChIKey1 = TWLXDPFBEPBAQB-UHFFFAOYSA-I }} | Section2={{Chembox Properties | Formula = IO4− | I=1 | O=4 | Formula_Charge = −1 | Formula1 = IO6−5 | I1=1 | O1=6 | Formula_Charge1 = −5 | ConjugateAcid = Periodic acid }} | Section3 = {{Chembox Related | OtherAnions = Perchlorate Perbromate Permanganate }} }} Periodate {{IPAc-en|p|ə|ˈ|r|aɪ|.|ə|d|eɪ|t}} is an anion composed of iodine and oxygen. It is one of a number of oxyanions of iodine and is the highest in the series, with iodine existing in oxidation state +7. Unlike other perhalogenates, such as perchlorate, it can exist in two forms: metaperiodate {{chem|IO|4|−}} and orthoperiodate {{chem|IO|6|5−}}. In this regard it is comparable to the tellurate ion from the adjacent group. It can combine with a number of counter ions to form periodates, which may also be regarded as the salts of periodic acid. Periodates were discovered by Heinrich Gustav Magnus and C. F. Ammermüller; who first synthesised periodic acid in 1833.[1] SynthesisClassically, periodate was most commonly produced in the form of sodium hydrogen periodate (Na3H2IO6).[2] This is commercially available, but can also be produced by the oxidation of iodates with chlorine and sodium hydroxide.[2] Or, similarly, from iodides by oxidation with bromine and sodium hydroxide: NaIO3 + Cl2 + 4 NaOH → Na3H2IO6 + 2 NaCl + H2O NaI + 4 Br2 + 10 NaOH → Na3H2IO6 + 8 NaBr + 4 H2O Modern industrial scale production involves the electrochemical oxidation of iodates, on a PbO2 anode, with the following standard electrode potential: H5IO6 + H+ + 2 e− → {{chem|IO|3|−}} + 3 H2O {{spaces|5}}E° = 1.6 V[3] Metaperiodates are typically prepared by the dehydration of sodium hydrogen periodate with nitric acid,[4] or by dehydrating orthoperiodic acid by heating it to 100 °C under vacuum. Na3H2IO6 + 2 HNO3 → NaIO4 + 2 NaNO3 + 2 H2O H5IO6 → HIO4 + 2 H2O They can also be generated directly from iodates by treatment with other strong oxidizing agents such as hypochlorites: NaIO3 + NaOCl → NaIO4 + NaCl Forms and interconversionPeriodate can exist in a variety of forms in aqueous media, with pH being a controlling factor. Orthoperiodate has a number of acid dissociation constants.[5][6]
The ortho- and metaperiodate forms also exist in equilibrium. {{chem|H|4|IO|6|−}} {{eqm}} {{chem|IO|4|−}} + 2 H2O,{{spaces|5}} K = 29 For this reason orthoperiodate is sometimes referred to as the dihydrate of metaperiodate,[7] written {{nowrap|{{chem|IO|4|−}}·2H2O}}; however, this description is not strictly accurate as X-ray crystallography of H5IO6 shows 5 equivalent I–OH groups.[8] At extremes of pH additional species can form. Under basic conditions a dehydration reaction can take place to form the diperiodate (sometimes referred to as mesoperiodate). 2 {{chem|H|3|IO|6|2−}} {{eqm}} {{chem|H|2|I|2|O|10|4−}} + 2 H2O,{{spaces|5}} K = 820 Under strongly acid conditions periodic acid can be protonated to give the orthoperiodonium cation.[9] {{chem|H|6|IO|6|+}} {{eqm}} H5IO6 + H+,{{spaces|5}} pKa = −0.8 Structure and bondingIn both the ortho- and metaperiodate the iodine is hypervalent, as it forms more bonds than would classically be allowed. This has been explained in terms of dative bonds, confirming the absence of double bonding in these molecules.[10] Exact structures vary depending on counter ions, however on average orthoperiodates adopt a slightly deformed octahedral geometry with X-ray diffraction showing I–O bond lengths of 1.89 Å.[11][8] Metaperiodates adopt a distorted tetrahedral geometry with an average I–O distance of 1.78 Å.[12][13] ReactionsCleavage reactionsPeriodates can cleave carbon–carbon bonds on a variety of 1,2-difunctionalised alkanes.[14][15] The most common example of this is diol cleavage, which was also the first to be discovered (Malaprade reaction).[16] In addition to diols, periodates can cleave 1,2-hydroxy ketones, 1,2-diketones, α-keto acids, α-hydroxy acids, amino acids,[17] 1,2-amino alcohols,[18] 1,2-diamines,[19] and epoxides[20] to give aldehydes, ketones, and carboxylic acids. Alkenes can also be oxidised and cleaved in the Lemieux–Johnson oxidation. This uses a catalytic loading of osmium tetroxide which is regenerated in situ by the periodate. The overall process is equivalent to that of ozonolysis. Cleavage reactions proceed via a cyclic intermediate called a periodate ester. The formation of this may be affected by pH and temperature[21] but is most strongly effected by the geometry of the substrate, with cis-diols reacting significantly faster than trans-diols.[22] The reactions are exothermic and are typically performed at 0 °C. As periodate salts are only readily soluble in water reactions are generally performed in aqueous media. Where solubility is an issue periodic acid may be used, as this is soluble in alcohols; phase transfer catalysts are also effective in biphasic reaction mixtures. In extreme cases the periodate may be exchanged for lead tetraacetate which reacts in a similar manner and is soluble in organic solvents (Criegee oxidation). Periodate cleavage is often utilized in molecular biochemistry for the purposes of modifying saccharide rings, as many five- and six-membered sugars have vicinal diols. Historically it was also used to determine the structure of monosaccharides.[23][24] Periodate cleavage may be performed on an industrial scale to form dialdehyde starch which has uses in paper production.[25] Oxidation reactionsPeriodates are powerful oxidising agents. They can oxidise catechol to 1,2-benzoquinone and hydroquinone to 1,4-benzoquinone.[26] Sulfides can be effectively oxidised to sulfoxides.[27] Periodates are sufficiently powerful to generate other strong inorganic oxidisers such as permanganate,[28] osmium tetroxide[29] and ruthenium tetroxide. Niche usesPeriodates are highly selective etchants for certain ruthenium-based oxides.[30] Several staining agents use in microscopy are based around periodate (e.g. periodic acid–Schiff stain and Jones' stain) Periodates have also been used as oxidising agents for use in pyrotechnics.[31] In 2013 the US Army announced that it would replace the environmentally harmful chemicals barium nitrate and potassium perchlorate with sodium metaperiodate for use in their tracer ammunition.[32] Other oxyanionsPeriodate is part of a series of oxyanions in which iodine can assume oxidation states of −1, +1, +3, +5, or +7. A number of neutral iodine oxides are also known.
See also
References1. ^{{cite journal|last=Ammermüller|first=F.|author2=Magnus, G.|title=Ueber eine neue Verbindung des Jods mit Sauerstoff, die Ueberjodsäure|journal=Annalen der Physik und Chemie|year=1833|volume=104|issue=7|pages=514–525|doi=10.1002/andp.18331040709|language=German|bibcode=1833AnP...104..514A}} 2. ^{{cite journal|last=Hill|first=Arthur E.|title=Ternary Systems. VII. The Periodates of the Alkali Metals|journal=Journal of the American Chemical Society|date=October 1928|volume=50|issue=10|pages=2678–2692|doi=10.1021/ja01397a013}} 3. ^{{cite book|last=Parsons|first=Roger|title=Handbook of electrochemical constants|year=1959|publisher=Butterworths Scientific Publications Ltd|page=71}} 4. ^1 {{cite book|last=Riley|first=edited by Georg Brauer; translated by Scripta Technica, Inc. Translation editor Reed F.|title=Handbook of preparative inorganic chemistry. Volume 1|year=1963|publisher=Academic Press|location=New York, N.Y.|isbn=012126601X|pages=323–324|edition=2nd}} 5. ^{{cite book|last=Aylett|first=founded by A.F. Holleman; continued by Egon Wiberg; translated by Mary Eagleson, William Brewer; revised by Bernhard J.|title=Inorganic chemistry|year=2001|publisher=Academic Press, W. de Gruyter.|location=San Diego, Calif.: Berlin|isbn=0123526515|page=454|edition=1st English ed., [edited] by Nils Wiberg.}} 6. ^{{cite book|last=Burgot|first=Jean-Louis|title=Ionic equilibria in analytical chemistry|publisher=Springer|location=New York|isbn=1441983821|page=358}} 7. ^{{cite book|last=Ropp|first=Richard C.|title=Encyclopedia of the alkaline earth compounds|publisher=Elsevier Science|location=Oxford|isbn=0444595538|page=96}} 8. ^1 {{cite journal|last=Feikema|first=Y. D.|title=The crystal structures of two oxy-acids of iodine. I. A study of orthoperiodic acid, H5IO6, by neutron diffraction|journal=Acta Crystallographica|year=1966|volume=20|issue=6|pages=765–769|doi=10.1107/S0365110X66001828}} 9. ^{{cite book|last=Greenwood|first=N.N.|title=Chemistry of the elements|year=2006|publisher=Butterworth-Heinemann|location=Oxford|isbn=0750633654|page=874|edition=2nd|author2=Earnshaw, A.}} 10. ^{{cite journal|last=Ivanov|first=A.|author2=Popov, A. |author3=Boldyrev, A. |author4= Zhdankin, V. |title=The I=X (X = O,N,C) Double Bond in Hypervalent Iodine Compounds: Is it Real?|journal=Angew. Chem. Int. Ed.|year=2014|DOI=10.1002/anie.201405142 |volume=53 |pages=9617–9621}} 11. ^{{cite journal|last=Tichý|first=K.|author2=Rüegg, A. |author3=Beneš, J. |title=Neutron diffraction study of diammonium trihydrogen periodate, (NH4)2H3IO6, and its deuterium analogue, (ND4)2D3IO6|journal=Acta Crystallographica Section B|year=1980|volume=36|issue=5|pages=1028–1032|doi=10.1107/S0567740880005225}} 12. ^{{cite journal|last=Levason|first=W.|author2=Webster, M.|title=Ammonium tetraoxoiodate(VII)|journal=Acta Crystallographica Section C|date=15 June 1999|volume=55|issue=6|pages=IUC9900052|doi=10.1107/S0108270199099394}} 13. ^{{cite journal|last=Kálmán|first=A.|author2=Cruickshank, D. W. J.|title=Refinement of the structure of NaIO4|journal=Acta Crystallographica Section B|year=1970|volume=26|issue=11|pages=1782–1785|doi=10.1107/S0567740870004880}} 14. ^{{cite journal|last=Sklarz|first=B.|title=Organic chemistry of periodates|journal=Quarterly Reviews, Chemical Society|date=1967|volume=21|issue=1|pages=3|doi=10.1039/QR9672100003}} 15. ^{{cite book|last=Bamford|first=edited by C.H.|title=Reactions of non-metallic inorganic compounds|date=1972|publisher=Elsevier Pub. Co.|location=Amsterdam|isbn=9780080868011|page=435|author2=Tipper, C.F.H.}} 16. ^L. Malaprade, Bull. Soc. Chim. Fr. 3, 1, 833 (1934) 17. ^{{cite journal|last=Clamp|first=J.R.|author2=Hough, L.|title=The Periodate Oxidation of Amino Acids with Reference to Studies on Glycoproteins.|journal=The Biochemical Journal|date=Jan 1965|volume=94|pages=17–24|pmid=14342227|pmc=1206400|doi=10.1042/bj0940017}} 18. ^{{cite journal|last1=Nicolet|first1=Ben H.|last2=Shinn|first2=Leo A.|title=THE ACTION OF PERIODIC ACID ON α-AMINO ALCOHOLS|journal=Journal of the American Chemical Society|date=June 1939|volume=61|issue=6|pages=1615–1615|doi=10.1021/ja01875a521}} 19. ^{{cite journal|last=Maros|first=László|author2=Molnár-Perl, Ibolya |author3=Schissel, Enikó |author4= Szerdahelyi, Vilmos |title=Mechanism of the periodate oxidation of ethane-1,2-diamine, N,N′-dimethylethane-1,2-diamine, and 2-aminoethanol|journal=Journal of the Chemical Society, Perkin Transactions 2|date=1980|issue=1|pages=39|doi=10.1039/P29800000039}} 20. ^{{cite journal|last=Telvekar|first=Vikas N.|author2=Patel, Dharmeshkumar J. |author3=Mishra, Sanket J. |title=Oxidative Cleavage of Epoxides Using Aqueous Sodium Paraperiodate|journal=Synthetic Communications|volume=39|issue=2|pages=311–315|doi=10.1080/00397910802372574}} 21. ^{{cite journal|last=Buist|first=G. J.|author2=Bunton, C. A. |author3=Hipperson, W. C. P. |title=The mechanism of oxidation of α-glycols by periodic acid. Part X. The oxidation of pinacol, and a general discussion of the stability of periodate esters and their role in the mechanism of oxidation|journal=Journal of the Chemical Society B: Physical Organic|year=1971|pages=2128|doi=10.1039/J29710002128}} 22. ^{{cite book|last=McMurry|first=John|title=Organic chemistry|year=2012|publisher=Brooks/Cole Cengage Learning|location=Singapore|isbn=084005453X|page=312|edition=8th ed., [international ed.]}} 23. ^{{cite journal|last=Jackson|first=Ernest L.|author2=Hudson, C. S.|title=Studies on the Cleavage of the Carbon Chain of Glycosides by Oxidation. A New Method for Determining Ring Structures and Alpha and Beta Configurations of Glycosides|journal=Journal of the American Chemical Society|date=June 1937|volume=59|issue=6|pages=994–1003|doi=10.1021/ja01285a010}} 24. ^{{cite book|last=Robyt|first=John F.|title=Essentials of carbohydrate chemistry|year=1998|publisher=Springer|location=New York|isbn=0387949518}} 25. ^{{cite journal|last=Yu|first=Jiugao|author2=Chang, Peter R. |author3=Ma, Xiaofei |title=The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch|journal=Carbohydrate Polymers|date=January 2010|volume=79|issue=2|pages=296–300|doi=10.1016/j.carbpol.2009.08.005}} 26. ^{{cite journal|last=Weidman|first=S. W.|author2=Kaiser, E. T.|title=The Mechanism of the Periodate Oxidation of Aromatic Systems. III. A Kinetic Study of the Periodate Oxidation of Catechol|journal=Journal of the American Chemical Society|date=December 1966|volume=88|issue=24|pages=5820–5827|doi=10.1021/ja00976a024}} 27. ^{{cite journal|last=Leonard|first=Nelson J.|author2=Johnson, Carl R.|title=Periodate Oxidation of Sulfides to Sulfoxides. Scope of the Reaction|journal=The Journal of Organic Chemistry|date=January 1962|volume=27|issue=1|pages=282–284|doi=10.1021/jo01048a504}} 28. ^{{cite journal|last=Lemieux|first=R. U.|author2=Rudloff, E. Von|title=Periodate–Permanganate Oxidations: I. Oxidation of Olefins|journal=Canadian Journal of Chemistry|date=November 1955|volume=33|issue=11|pages=1701–1709|doi=10.1139/v55-208}} 29. ^{{cite journal|last1=Pappo|first1=R.|last2=Allen, Jr.|first2=D. S.|last3=Lemieux|first3=R. U.|last4=Johnson|first4=W. S.|title=Notes - Osmium Tetroxide-Catalyzed Periodate Oxidation of Olefinic Bonds|journal=The Journal of Organic Chemistry|volume=21|issue=4|year=1956|pages=478–479|issn=0022-3263|doi=10.1021/jo01110a606}} 30. ^Dieter Weber, Róza Vöfély, Yuehua Chen, Yulia Mourzina, Ulrich Poppe: Variable resistor made by repeated steps of epitaxial deposition and lithographic structuring of oxide layers by using wet chemical etchants. Thin Solid Films (2013) DOI: 10.1016/j.tsf.2012.11.118 31. ^{{cite journal|last=Moretti|first=Jared D.|author2=Sabatini, Jesse J. |author3=Chen, Gary |title=Periodate Salts as Pyrotechnic Oxidizers: Development of Barium- and Perchlorate-Free Incendiary Formulations|journal=Angewandte Chemie International Edition|date=9 July 2012|volume=51|issue=28|pages=6981–6983|doi=10.1002/anie.201202589|pmid=22639415}} 32. ^{{cite web|title=Picatinny to remove tons of toxins from lethal rounds|url=http://www.army.mil/article/109769/Picatinny_to_remove_tons_of_toxins_from_lethal_rounds/|publisher=U.S. Army|accessdate=31 October 2013}} 2 : Perhalates|Periodates |
||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。