请输入您要查询的百科知识:

 

词条 Pontryagin class
释义

  1. Definition

  2. Properties

      Pontryagin classes and curvature    Pontryagin classes of a manifold  

  3. Pontryagin numbers

      Properties  

  4. Generalizations

  5. See also

  6. References

  7. External links

In mathematics, the Pontryagin classes, named for Lev Pontryagin, are certain characteristic classes. The Pontryagin class lies in cohomology groups with degree a multiple of four. It applies to real vector bundles.

Definition

Given a real vector bundle E over M, its k-th Pontryagin class pk(E) is defined as

pk(E) = pk(E, Z) = (−1)k c2k(EC) ∈ H4k(M, Z),

where:

  • c2k(EC) denotes the 2k-th Chern class of the complexification EC = EiE of E,
  • H4k(M, Z) is the 4k-cohomology group of M with integer coefficients.

The rational Pontryagin class pk(E, Q) is defined to be the image of pk(E) in H4k(M, Q), the 4k-cohomology group of M with rational coefficients.

Properties

The total Pontryagin class

is (modulo 2-torsion) multiplicative with respect to

Whitney sum of vector bundles, i.e.,

for two vector bundles E and F over M. In terms of the individual Pontryagin classes pk,

and so on.

The vanishing of the Pontryagin classes and Stiefel–Whitney classes of a vector bundle does not guarantee that the vector bundle is trivial. For example, up to vector bundle isomorphism, there is a unique nontrivial rank 10 vector bundle E10 over the 9-sphere. (The clutching function for E10 arises from the homotopy group π8(O(10)) = Z/2Z.) The Pontryagin classes and Stiefel-Whitney classes all vanish: the Pontryagin classes don't exist in degree 9, and the Stiefel–Whitney class w9 of E10 vanishes by the Wu formula w9 = w1w8 + Sq1(w8). Moreover, this vector bundle is stably nontrivial, i.e. the Whitney sum of E10 with any trivial bundle remains nontrivial. {{Harv|Hatcher|2009|p=76}}

Given a 2k-dimensional vector bundle E we have

where e(E) denotes the Euler class of E, and denotes the cup product of cohomology classes.

Pontryagin classes and curvature

As was shown by Shiing-Shen Chern and André Weil around 1948, the rational Pontryagin classes

can be presented as differential forms which depend polynomially on the curvature form of a vector bundle. This Chern–Weil theory revealed a major connection between algebraic topology and global differential geometry.

For a vector bundle E over a n-dimensional differentiable manifold M equipped with a connection, the total Pontryagin class is expressed as

where Ω denotes the curvature form, and H*dR(M) denotes the de Rham cohomology groups.{{Citation needed|date=July 2009}}

Pontryagin classes of a manifold

The Pontryagin classes of a smooth manifold are defined to be the Pontryagin classes of its tangent bundle.

Novikov proved in 1966 that if manifolds are homeomorphic then their rational Pontryagin classes pk(M, Q) in H4k(M, Q) are the same.

If the dimension is at least five, there are at most finitely many different smooth manifolds with given homotopy type and Pontryagin classes.

Pontryagin numbers

Pontryagin numbers are certain topological invariants of a smooth manifold. The Pontryagin number vanishes if the dimension of manifold is not divisible by 4. It is defined in terms of the Pontryagin classes of a manifold as follows:

Given a smooth -dimensional manifold M and a collection of natural numbers

such that ,

the Pontryagin number is defined by

where denotes the k-th Pontryagin class and [M] the fundamental class of M.

Properties

  1. Pontryagin numbers are oriented cobordism invariant; and together with Stiefel-Whitney numbers they determine an oriented manifold's oriented cobordism class.
  2. Pontryagin numbers of closed Riemannian manifolds (as well as Pontryagin classes) can be calculated as integrals of certain polynomials from the curvature tensor of a Riemannian manifold.
  3. Invariants such as signature and -genus can be expressed through Pontryagin numbers. For the theorem describing the linear combination of Pontryagin numbers giving the signature see Hirzebruch signature theorem.

Generalizations

There is also a quaternionic Pontryagin class, for vector bundles with quaternion structure.

See also

  • Chern–Simons form

References

  • {{cite book

|author= Milnor John W.
|author2=Stasheff, James D. |authorlink2=Jim Stasheff
|title= Characteristic classes
|work= Annals of Mathematics Studies
|issue=76
|publisher=Princeton University Press / University of Tokyo Press
|location=Princeton, New Jersey; Tokyo
|year= 1974
|isbn= 0-691-08122-0}}
  • {{Cite journal | last=Hatcher | first=Allen | author-link=Allen Hatcher | title=Vector Bundles & K-Theory | edition=2.1 | year=2009 | ref=harv | postscript= | url=http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}}

External links

  • {{springer|title=Pontryagin class|id=p/p073750}}

2 : Characteristic classes|Differential topology

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 0:41:14