词条 | Receptor (biochemistry) | ||||||||||||||||||||||||||||||||||||
释义 |
In biochemistry and pharmacology, a receptor is a protein molecule that receives chemical signals from outside a cell.[1] When such chemical signals bind to a receptor, they cause some form of cellular/tissue response, e.g. a change in the electrical activity of a cell. There are three main ways the action of the receptor can be classified: relay of signal, amplification, or integration.[2] Relaying sends the signal onward, amplification increases the effect of a single ligand, and integration allows the signal to be incorporated into another biochemical pathway.[2] In this sense, a receptor is a protein-molecule that recognizes and responds to endogenous chemical signals, e.g. an acetylcholine receptor recognizes and responds to its endogenous ligand, acetylcholine. However, sometimes in pharmacology, the term is also used to include other proteins that are drug targets, such as enzymes, transporters, and ion channels. Receptor proteins can be classified by their location. Transmembrane receptors include ion channel-linked (ionotropic) receptors, G protein-linked (metabotropic) hormone receptors, and enzyme-linked hormone receptors.[1] Intracellular receptors are those found inside the cell, and include cytoplasmic receptors and nuclear receptors.[1] A molecule that binds to a receptor is called a ligand, and can be a protein or peptide (short protein), or another small molecule such as a neurotransmitter, hormone, pharmaceutical drug, toxin, or parts of the outside of a virus or microbe. The endogenously designated -molecule for a particular receptor is referred to as its endogenous ligand. E.g. the endogenous ligand for the nicotinic acetylcholine receptor is acetylcholine but the receptor can also be activated by nicotine and blocked by curare.{{Citation needed|date=September 2016}} Each receptor is linked to a specific cellular biochemical pathway. While numerous receptors are found in most cells, each receptor will only bind with ligands of a particular structure, much like how locks will only accept specifically shaped keys. When a ligand binds to its corresponding receptor, it activates or inhibits the receptor's associated biochemical pathway. StructureThe structures of receptors are very diverse and include the following major categories, among others:
Membrane receptors may be isolated from cell membranes by complex extraction procedures using solvents, detergents, and/or affinity purification. The structures and actions of receptors may be studied by using biophysical methods such as X-ray crystallography, NMR, circular dichroism, and dual polarisation interferometry. Computer simulations of the dynamic behavior of receptors have been used to gain understanding of their mechanisms of action. Binding and activationLigand binding is an equilibrium process. Ligands bind to receptors and dissociate from them according to the law of mass action. One measure of how well a molecule fits a receptor is its binding affinity, which is inversely related to the dissociation constant Kd. A good fit corresponds with high affinity and low Kd. The final biological response (e.g. second messenger cascade, muscle-contraction), is only achieved after a significant number of receptors are activated. Affinity is a measure of the tendency of a ligand to bind to its receptor. Efficacy is the measure of the bound ligand to activate its receptor. Agonists versus antagonistsNot every ligand that binds to a receptor also activates that receptor. The following classes of ligands exist:
Note that the idea of receptor agonism and antagonism only refers to the interaction between receptors and ligands and not to their biological effects. Constitutive activityA receptor which is capable of producing a biological response in the absence of a bound ligand is said to display "constitutive activity".[6] The constitutive activity of a receptor may be blocked by an inverse agonist. The anti-obesity drugs rimonabant and taranabant are inverse agonists at the cannabinoid CB1 receptor and though they produced significant weight loss, both were withdrawn owing to a high incidence of depression and anxiety, which are believed to relate to the inhibition of the constitutive activity of the cannabinoid receptor. Mutations in receptors that result in increased constitutive activity underlie some inherited diseases, such as precocious puberty (due to mutations in luteinizing hormone receptors) and hyperthyroidism (due to mutations in thyroid-stimulating hormone receptors). Theories of drug-receptor interactionOccupationThe central dogma of receptor pharmacology is that a drug effect is directly proportional to the number of receptors that are occupied. Furthermore, a drug effect ceases as a drug-receptor complex dissociates. Ariëns & Stephenson introduced the terms "affinity" & "efficacy" to describe the action of ligands bound to receptors.[7][8]
RateIn contrast to the accepted Occupation Theory, Rate Theory proposes that the activation of receptors is directly proportional to the total number of encounters of a drug with its receptors per unit time. Pharmacological activity is directly proportional to the rates of dissociation and association, not the number of receptors occupied:[9]
Induced-fitAs a drug approaches a receptor, the receptor alters the conformation of its binding site to produce drug—receptor complex. Spare ReceptorsIn some receptor systems (e.g. acetylcholine at the neuromuscular junction in smooth muscle), agonists are able to elicit maximal response at very low levels of receptor occupancy (<1%). Thus, that system has spare receptors or a receptor reserve. This arrangement produces an economy of neurotransmitter production and release.[5] Receptor-regulationCells can increase (upregulate) or decrease (downregulate) the number of receptors to a given hormone or neurotransmitter to alter their sensitivity to different molecule. This is a locally acting feedback mechanism.
LigandsThe ligands for receptors are as diverse as their receptors. Examples include:[11] Extracellular
Intracellular
Role in genetic disordersMany genetic disorders involve hereditary defects in receptor genes. Often, it is hard to determine whether the receptor is nonfunctional or the hormone is produced at decreased level; this gives rise to the "pseudo-hypo-" group of endocrine disorders, where there appears to be a decreased hormonal level while in fact it is the receptor that is not responding sufficiently to the hormone. In the immune system{{Main article|Immune receptor}}The main receptors in the immune system are pattern recognition receptors (PRRs), toll-like receptors (TLRs), killer activated and killer inhibitor receptors (KARs and KIRs), complement receptors, Fc receptors, B cell receptors and T cell receptors.[12] See also
References1. ^1 2 {{cite book |author1=Hall, JE |year=2016 |title= Guyton and Hall Textbook of Medical Physiology |location= Philadelphia, PA |publisher= Elsevier Saunders |pages=930–937 |isbn=978-1-4557-7005-2}} 2. ^1 {{cite book|last1=Alberts|first1=Bruce|last2=Bray|first2=Dennis|last3=Hopkin|first3=Karen|last4=Johnson|first4=Alexander|last5=Lewis|first5=Julian|last6=Raff|first6=Martin|last7=Roberts|first7=Keith|last8=Walter|first8=Peter | name-list-format = vanc |title=Essential Cell Biology|date=2014|publisher=Garland Science|location=New York, NY, USA|isbn=978-0-8153-4454-4|page=534|edition=Fourth}} 3. ^{{cite journal | vauthors = Congreve M, Marshall F | title = The impact of GPCR structures on pharmacology and structure-based drug design | journal = British Journal of Pharmacology | volume = 159 | issue = 5 | pages = 986–96 | date = March 2010 | pmid = 19912230 | pmc = 2839258 | doi = 10.1111/j.1476-5381.2009.00476.x }} 4. ^{{cite journal | vauthors = Qin K, Dong C, Wu G, Lambert NA | title = Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers | journal = Nature Chemical Biology | volume = 7 | issue = 10 | pages = 740–7 | date = August 2011 | pmid = 21873996 | pmc = 3177959 | doi = 10.1038/nchembio.642 | last-author-amp = yes }} 5. ^1 {{cite book |vauthors=Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G | year=2012 | edition= 7th | title= Rang & Dale's Pharmacology |publisher= Elsevier Churchill Livingstone |isbn= 978-0-7020-3471-8}} 6. ^{{cite journal | vauthors = Milligan G | title = Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective | journal = Molecular Pharmacology | volume = 64 | issue = 6 | pages = 1271–6 | date = December 2003 | pmid = 14645655 | doi = 10.1124/mol.64.6.1271 }} 7. ^{{cite journal | vauthors = Ariens EJ | title = Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory | journal = Archives Internationales De Pharmacodynamie Et De Therapie | volume = 99 | issue = 1 | pages = 32–49 | date = September 1954 | pmid = 13229418 | doi = }} 8. ^{{cite journal | vauthors = Stephenson RP | title = A modification of receptor theory | journal = British Journal of Pharmacology and Chemotherapy | volume = 11 | issue = 4 | pages = 379–93 | date = December 1956 | pmid = 13383117 | pmc = 1510558 | doi = 10.1111/j.1476-5381.1956.tb00006.x }} 9. ^{{cite book | author = Silverman RB | title = The Organic Chemistry of Drug Design and Drug Action | edition = 2nd | publisher = Elsevier Academic Press | location = Amsterdam | year = 2004 | isbn = 0-12-643732-7 | pages = | chapter = 3.2.C Theories for Drug—Receptor Interactions }} 10. ^{{cite journal |vauthors=Boulay G, Chrétien L, Richard DE, Guillemette G |date= November 1994 |title= Short-term desensitization of the angiotensin II receptor of bovinde adrenal glomerulosa cells corresponds to a shift from a high to low affinity state |journal= Endocrinology |volume=135 |issue=5 |pages= 2130–6|doi=10.1210/en.135.5.2130}} 11. ^1 2 3 4 5 6 7 8 9 10 11 {{cite book | vauthors = Boulpaep EL, Boron WF |year=2005 |title= Medical physiology: a cellular and molecular approach |location= St. Louis, Mo |publisher= Elsevier Saunders |page=90 |isbn=1-4160-2328-3}} 12. ^{{cite book |vauthors=Waltenbaugh C, Doan T, Melvold R, Viselli S | title = Immunology | publisher = Wolters Kluwer Health/Lippincott Williams & Wilkins | location = Philadelphia | year = 2008 | page = 20 | isbn = 0-7817-9543-5 | oclc = | doi = | access-date = }} External links
4 : Cell biology|Cell signaling|Membrane biology|Receptors |
||||||||||||||||||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。