词条 | Global analysis |
释义 |
In mathematics, global analysis, also called analysis on manifolds, is the study of the global and topological properties of differential equations on manifolds and vector bundles.[1][2] Global analysis uses techniques in infinite-dimensional manifold theory and topological spaces of mappings to classify behaviors of differential equations, particularly nonlinear differential equations.[3] These spaces can include singularities and hence catastrophe theory is a part of global analysis. Optimization problems, such as finding geodesics on Riemannian manifolds, can be solved using differential equations so that the calculus of variations overlaps with global analysis. Global analysis finds application in physics in the study of dynamical systems[4] and topological quantum field theory. Journals
See also
References1. ^{{cite journal|last=Smale|first=S.|title=What is Global Analysis|journal=American Mathematical Monthly|date=January 1969|volume=76|issue=1|pages=4–9|doi=10.2307/2316777}} 2. ^{{cite book|last=Richard S. Palais|title=Foundations of Global Non-Linear Analysis|url=http://vmm.math.uci.edu/PalaisPapers/FoundationsOfGlobalNonlinearAnalysis.pdf|date=1968|publisher=W.A. Benjamin, Inc.}} 3. ^{{cite book|last=Andreas Kriegl and Peter W. Michor|title=The Convenient Setting of Global Analysis|url=http://www.mat.univie.ac.at/~michor/apbookh-ams.pdf|date=1991|publisher=American Mathematical Society|isbn=0-8218-0780-3|pages=1–7}} 4. ^{{cite book|last=Marsden|first=Jerrold E.|title=Applications of global analysis in mathematical physics|date=1974|publisher=Publish or Perish, Inc.|location=Berkeley, CA.|isbn=0-914098-11-X|page=Chapter 2|url=http://authors.library.caltech.edu/25041/}} Further reading{{Sister project links| wikt=no | commons=no | b=no | n=no | q=Global analysis | s=no | v=no | voy=no | species=no | d=no}}
3 : Mathematical analysis|Manifolds|Differential equations |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。