请输入您要查询的百科知识:

 

词条 Rotation operator (quantum mechanics)
释义

  1. Quantum mechanical rotations

  2. The translation operator

  3. In relation to the orbital angular momentum

  4. Effect on the spin operator and quantum states

  5. See also

  6. References

{{Other uses|Rotation operator (disambiguation)}}{{Quantum mechanics}}

This article concerns the rotation operator, as it appears in quantum mechanics.

Quantum mechanical rotations

With every physical rotation R, we postulate a quantum mechanical rotation operator D(R) which rotates quantum mechanical states.

In terms of the generators of rotation,

is rotation axis, and is angular momentum.

The translation operator

{{Main|Translation operator (quantum mechanics)}}

The rotation operator , with the first argument indicating the rotation axis and the second the rotation angle, can operate through the translation operator for infinitesimal rotations as explained below. This is why, it is first shown how the translation operator is acting on a particle at position x (the particle is then in the state according to Quantum Mechanics).

Translation of the particle at position x to position x+a:

Because a translation of 0 does not change the position of the particle, we have (with 1 meaning the identity operator, which does nothing):

Taylor development gives:

with

From that follows:

This is a differential equation with the solution .

Additionally, suppose a Hamiltonian is independent of the position. Because the translation operator can be written in terms of , and , we know that . This result means that linear momentum for the system is conserved.

In relation to the orbital angular momentum

Classically we have for the angular momentum . This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector r=(x,y,z) about the z-axis to r'=(x',y',z) leaving z unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):

From that follows for states:

And consequently:

Using from above with and Taylor expansion we get:

with lz = x py - y px the z-component of the angular momentum according to the classical cross product.

To get a rotation for the angle , we construct the following differential equation using the condition :

Similar to the translation operator, if we are given a Hamiltonian which rotationally symmetric about the z axis, implies . This result means that angular momentum is conserved.

For the spin angular momentum about the y-axis we just replace with and we get the spin rotation operator .

Effect on the spin operator and quantum states

{{Main|Spin (physics)#Rotations}}{{see also|Rotation group SO(3)#A note on Lie algebra}}

Operators can be represented by matrices. From linear algebra one knows that a certain matrix can be represented in another basis through the transformation

where is the basis transformation matrix. If the vectors respectively are the z-axis in one basis respectively another, they are perpendicular to the y-axis with a certain angle between them. The spin operator in the first basis can then be transformed into the spin operator of the other basis through the following transformation:

From standard quantum mechanics we have the known results and where and are the top spins in their corresponding bases. So we have:

Comparison with yields .

This means that if the state is rotated about the y-axis by an angle , it becomes the state , a result that can be generalized to arbitrary axes. It is important, for instance, in Sakurai's Bell inequality.

See also

  • Symmetry in quantum mechanics
  • Spherical basis
  • Optical phase space

References

  • L.D. Landau and E.M. Lifshitz: Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, 1985
  • P.A.M. Dirac: The Principles of Quantum Mechanics, Oxford University Press, 1958
  • R.P. Feynman, R.B. Leighton and M. Sands: The Feynman Lectures on Physics, Addison-Wesley, 1965
{{Physics operator}}{{DEFAULTSORT:Rotation Operator (Quantum Mechanics)}}

2 : Rotational symmetry|Quantum mechanics

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 7:20:31