词条 | Astrophysical plasma |
释义 |
When matter becomes sufficiently hot, it becomes ionized and forms a plasma. This process breaks matter into its constituent particles which includes negatively-charged electrons and positively-charged ions.[4] These electrically-charged particles are susceptible to influences by local electromagnetic fields. This includes strong fields generated by stars, and weak fields which exist in star forming regions, in interstellar space, and in intergalactic space.[5] Similarly, electric fields are observed in some stellar astrophysical phenomena, but they are inconsequential in very low-density gaseous mediums. Astrophysical plasma is often differentiated from space plasma, which typically refers to the plasma of the Sun, the solar wind, and the ionospheres and magnetospheres of the Earth and other planets.[6][7][8][9][10][11][12] Observing and studying astrophysical plasma{{expand section|date=February 2018}}Plasmas in stars can both generate and interact with magnetic fields, resulting in a variety of dynamic astrophysical phenomena. These phenomena are sometimes observed in spectra due to the Zeeman effect. Other forms of astrophysical plasmas can be influenced by preexisting weak magnetic fields, whose interactions may only be determined directly by polarimetry or other indirect methods.[5] In particular, the intergalactic medium, the interstellar medium, the interplanetary medium and solar winds consist of diffuse plasmas. Astrophysical plasma may also be studied in a variety of ways as they emit electromagnetic radiation across a wide range of the electromagnetic spectrum. Because astrophysical plasmas are generally hot, electrons in the plasmas are continually emitting X-rays through the process called bremsstrahlung. This radiation may be detected with X-ray telescopes located in the upper atmosphere or in space. Astrophysical plasmas also emit radio waves and gamma rays.{{Citation needed|date=September 2018}} Possible related phenomenaScientists are interested in active galactic nuclei because such astrophysical plasmas could be directly related to the plasmas studied in laboratories.[13] Many of these phenomena seemingly exhibit an array of complex magnetohydrodynamic behaviors, such as turbulence and instabilities.[2] Although these phenomena may occur on astronomical scales as large as the galactic core, many astrophysicists suggest that they do not significantly involve plasma effects but are caused by matter consumed by super massive black holes.{{Citation needed|date=February 2018}} In Big Bang cosmology, the entire universe was in a plasma state prior to recombination.{{Citation needed|date=December 2015}} Afterwards, much of the universe reionized after the first quasars formed.{{Citation needed|date=February 2018}} Studying astrophysical plasmas is part of mainstream academic astrophysics. Though plasma processes are part of the standard cosmological model, current theories indicate that they might have only a minor role to play in forming the very largest structures, such as voids, galaxy clusters and superclusters.{{Citation needed|date=February 2018}} Early historyNorwegian explorer and physicist Kristian Birkeland predicted that space is filled with plasma. He wrote in 1913: {{quote|It seems to be a natural consequence of our points of view to assume that the whole of space is filled with electrons and flying electric ions of all kinds. We have assumed that each stellar system through its evolution throws off electric corpuscles into space.}}Birkeland assumed that most of the mass in the universe should be found in "empty" space.[14] In 1937, plasma physicist Hannes Alfvén argued that if plasma pervaded the universe, then it could generate a galactic magnetic field. During the 1940s and 1950s, Alfvén developed magnetohydrodynamics which enables plasmas to be modeled as waves in a fluid. Alfvén received the 1970 Nobel Prize in Physics for this development. Alfvén later proposed this as the possible basis of plasma cosmology, although this theory has faced scrutiny.{{Citation needed|date=September 2018}} See also
1. ^{{cite news|title=Sneak Preview of Survey Telescope Treasure Trove|url=http://www.eso.org/public/news/eso1403/|accessdate=23 January 2014|newspaper=ESO Press Release}} 2. ^1 {{Cite web|url=http://news.mit.edu/2017/study-uncovers-new-mechanisms-astrophysical-plasma-turbulence-1201|title=Study sheds light on turbulence in astrophysical plasmas : Theoretical analysis uncovers new mechanisms in plasma turbulence|publisher=MIT News|access-date=2018-02-20}} 3. ^{{Cite journal|last1=Chiuderi|first1=C.|last2=Velli|first2=M.|date=2015|title=Basics of Plasma Astrophysics|journal=Basics of Plasma Astrophysics|page=17|isbn=978-88-470-5280-2|bibcode=2015bps..book.....C}} 4. ^{{GoldBookRef|title=Ionization|file=I03183}} 5. ^1 {{Cite journal|url=https://arxiv.org/ftp/arxiv/papers/0902/0902.3618.pdf|title=Understanding of the role of magnetic fields: Galactic perspective|journal=Astro2010: The Astronomy and Astrophysics Decadal Survey|volume=2010|pages=175|authors=Lazarian, A., Boldyrev, S., Forest, C., Sarff, P.|access-date=2018-02-20|bibcode=2009astro2010S.175L|year=2009|arxiv=0902.3618}} 6. ^{{cite web|url=http://www.oulu.fi/~spaceweb/textbook/|title=Space Physics Textbook |date=2006-11-26|accessdate=2018-02-23|deadurl=yes|archiveurl=https://web.archive.org/web/20081218061302/http://www.oulu.fi/~spaceweb/textbook/|archivedate=December 18, 2008 }} 7. ^{{Cite web|url=http://sp2rc.group.shef.ac.uk/|title=The Solar Physics and Space Plasma Research Centre (SP2RC)|publisher=MIT News|access-date=2018-02-23}} 8. ^{{Cite journal|last=Owens|first=Mathew J.|last2=Forsyth|first2=Robert J.|title=The Heliospheric Magnetic Field|year=2003|journal=Living Reviews in Solar Physics|language=en|volume=10|issue=1|pages=5|doi=10.12942/lrsp-2013-5|issn=2367-3648|bibcode = 2013LRSP...10....5O |arxiv=1002.2934}} 9. ^{{cite book|first=Andrew F.|last= Nagy|pages=1–2|title=Comparative Aeronomy|author2=Balogh, André|author3= Thomas E. Cravens|author4=Mendillo, Michael|author5=Mueller-Woodarg, Ingo|publisher=Springer|year=2008|isbn=978-0-387-87824-9}} 10. ^{{cite book|last=Ratcliffe|first=John Ashworth|title=An Introduction to the Ionosphere and Magnetosphere|year=1972|publisher=CUP Archive|isbn=9780521083416|url=https://books.google.com/books?id=uVA4AAAAIAAJ}} 11. ^NASA Study Using Cluster Reveals New Insights Into Solar Wind, NASA, Greenbelt, 2012, p.1 12. ^{{cite journal|last = Cade III|first = William B.|author2 = Christina Chan-Park|title = The Origin of "Space Weather"|journal=Space Weather|volume = 13|issue = 2|pages =99|date=2015|doi = 10.1002/2014SW001141|bibcode = 2015SpWea..13...99C}} 13. ^{{Cite journal|title=Lab experiments mimic the origin and growth of astrophysical magnetic fields|journal=Physics Today|volume=71|issue=4|pages=20-22|last=|first=|date=April 2018|doi = 10.1063/PT.3.3891|bibcode = 2018PhT....71d..20B|last1 = Berkowitz|first1 = Rachel}} 14. ^{{cite book |last=Birkeland|first=Kristian|title=The Norwegian Aurora Polaris Expedition 1902-1903|year=1908|page=720|publisher=H. Aschehoug & Co|location=New York and Christiania (now Oslo)|url=https://archive.org/details/norwegianaurorap01chririch}} out-of-print, full text online. ReferencesExternal links
5 : Plasma physics|Solar phenomena|Space physics|Space plasmas|Stellar phenomena |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。