词条 | Light-oxygen-voltage-sensing domain |
释义 |
A Light-oxygen-voltage-sensing domain (LOV domain) is a protein sensor used by a large variety of higher plants, microalgae, fungi and bacteria to sense environmental conditions. In higher plants, they are used to control phototropism, chloroplast relocation, and stomatal opening, whereas in fungal organisms, they are used for adjusting the circadian temporal organization of the cells to the daily and seasonal periods. ChromophoreCommon to all LOV proteins is the blue-light sensitive flavin chromophore, which in the signaling state is covalently linked to the protein core via an adjacent cysteine residue.[2][3] LOV domains are e.g. encountered in phototropins, which are blue-light-sensitive protein complexes regulating a great diversity of biological processes in higher plants as well as in micro-algae.[4][5][6][7] Phototropins are composed of two LOV domains, each containing a non-covalently bound flavin mononucleotide (FMN) chromophore in its dark-state form, and a C-terminal Ser-Thr kinase. Upon blue-light absorption, a covalent bond between the FMN chromophore and an adjacent reactive cysteine residue of the apo-protein is formed in the LOV2 domain. This subsequently mediates the activation of the kinase, which induces a signal in the organism through phototropin autophosphorylation.[8] While the photochemical reactivity of the LOV2 domain has been found to be essential for the activation of the kinase, the in vivo functionality of the LOV1 domain within the protein complex still remains unclear.[9] FungusIn case of the fungus Neurospora crassa, the circadian clock is controlled by two light-sensitive domains, known as the white-collar-complex (WCC) and the LOV domain vivid (VVD-LOV).[10][11][12] WCC is primarily responsible for the light-induced transcription on the control-gene frequency (FRQ) under day-light conditions, which drives the expression of VVD-LOV and governs the negative feedback loop onto the circadian clock.[12][14] By contrast, the role of VVD-LOV is mainly modulatory and does not directly affect FRQ.[11][16] Gene expressionLOV domains have been found to control gene expression through DNA binding and to be involved in redox-dependent regulation, like e.g. in the bacterium Rhodobacter sphaeroides.[17][18] Notably, LOV-based optogenetic tools have been gaining wide popularity in recent years to control a myriad of cellular events, including cell motility,[1] subcellular organelle distribution,[2] formation of membrane contact sites,[3] and protein degradation.[4] See also
References1. ^{{Cite journal|title = A genetically encoded photoactivatable Rac controls the motility of living cells|journal = Nature|date = 2009-01-01|pmc = 2766670|pmid = 19693014|volume = 461|issue = 7260|pages = 104–8|doi = 10.1038/nature08241|first = Yi I.|last = Wu|first2 = Daniel|last2 = Frey|first3 = Oana I.|last3 = Lungu|first4 = Angelika|last4 = Jaehrig|first5 = Ilme|last5 = Schlichting |authorlink5=Ilme Schlichting |first6 = Brian|last6 = Kuhlman|first7 = Klaus M.|last7 = Hahn}} [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]2. ^{{Cite journal|title = Optogenetic control of organelle transport and positioning|journal = Nature|date = 2015-01-01|volume = 518|issue = 7537|pages = 111–4|doi = 10.1038/nature14128|pmid = 25561173|first = Petra|last = van Bergeijk|first2 = Max|last2 = Adrian|first3 = Casper C.|last3 = Hoogenraad|first4 = Lukas C.|last4 = Kapitein|pmc=5063096}} 3. ^{{Cite journal|title = Proteomic mapping of ER–PM junctions identifies STIMATE as a regulator of Ca2+ influx|journal = Nature Cell Biology|volume = 17|issue = 10|pages = 1339–47|date = 2015-01-01|doi = 10.1038/ncb3234|pmid = 26322679|first = Ji|last = Jing|first2 = Lian|last2 = He|first3 = Aomin|last3 = Sun|first4 = Ariel|last4 = Quintana|first5 = Yuehe|last5 = Ding|first6 = Guolin|last6 = Ma|first7 = Peng|last7 = Tan|first8 = Xiaowen|last8 = Liang|first9 = Xiaolu|last9 = Zheng|pmc=4589512}} 4. ^{{Cite journal|title = A LOV2 Domain-Based Optogenetic Tool to Control Protein Degradation and Cellular Function|journal = Chemistry & Biology|issn = 1074-5521|pmid = 23601651|pages = 619–626|volume = 20|issue = 4|doi = 10.1016/j.chembiol.2013.03.005|first = Christian|last = Renicke|first2 = Daniel|last2 = Schuster|first3 = Svetlana|last3 = Usherenko|first4 = Lars-Oliver|last4 = Essen|first5 = Christof|last5 = Taxis|year = 2013}} 5. ^1 {{cite journal|doi=10.1038/ncomms1121|title=Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa|journal=Nature Communications|volume=1|issue=8|pages=122|year=2010|last1=Peter|first1=Emanuel|last2=Dick|first2=Bernhard|last3=Baeurle|first3=Stephan A.|pmid=21081920}} 6. ^1 {{cite journal|doi=10.1063/1.3697370|pmid=22462840|title=A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins|journal=The Journal of Chemical Physics|volume=136|issue=12|pages=124112|year=2012|last1=Peter|first1=Emanuel|last2=Dick|first2=Bernhard|last3=Baeurle|first3=Stephan A.|url=https://epub.uni-regensburg.de/26504/1/Pacs19.pdf}} 7. ^1 {{cite journal|author=Hegemann, P. |title=Algal sensory photoreceptors|journal=Annual Review of Plant Biology|volume= 59|pages=167–89 |year=2008|pmid=18444900|doi=10.1146/annurev.arplant.59.032607.092847}} 8. ^1 {{cite journal|author=Christie, J. M. |title=Phototropin blue-light receptors|journal=Annual Review of Plant Biology|volume= 58|pages= 21–45 |year=2007|pmid=17067285|doi=10.1146/annurev.arplant.58.032806.103951}} 9. ^1 {{cite journal|author=Briggs, W. R.|title=The LOV domain: A chromophore module servicing multiple photoreceptors|journal=Journal of Biomedical Science|volume= 14|issue=4|pages= 499–504 |year=2007|pmid=17380429|doi=10.1007/s11373-007-9162-6}} 10. ^1 {{cite journal|doi= 10.1002/bip.20510|pmid= 16552739|title= The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot|journal= Biopolymers|volume= 82|issue= 4|pages= 373–8|year= 2006|last1= Kottke|first1= Tilman|last2= Hegemann|first2= Peter|last3= Dick|first3= Bernhard|last4= Heberle|first4= Joachim}} 11. ^1 {{cite journal|author1=Jones, M. A. |author2=Feeney, K. A. |author3=Kelly, S. M. |author4=Christie, J. M. |title=Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission|journal=Journal of Biological Chemistry|volume= 282|issue=9|pages= 6405–14 |year=2007|pmid=17164248|doi=10.1074/jbc.M605969200}} 12. ^1 {{cite journal|author1=Matsuoka, D. |author2=Tokutomi, S. |title=Blue light-regulated molecular switch of Ser/Thr kinase in phototropin|doi=10.1073/pnas.0506402102|pmid=16150710|pmc=1198998|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=102|issue=37|pages= 13337–42 |year=2005}} 13. ^1 {{cite journal|doi= 10.1002/prot.23213|title= Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor|journal= Proteins: Structure, Function, and Bioinformatics|volume= 80|issue= 2|pages= 471–481|year= 2012|last1= Peter|first1= Emanuel|last2= Dick|first2= Bernhard|last3= Baeurle|first3= Stephan A.}} 14. ^1 2 {{cite journal|author1=Heintzen, C. |author2=Loros, J. J. |author3=Dunlap, J. C. |title=The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting|journal=Cell|volume= 104|issue=3|pages= 453–64 |year=2001|pmid=11239402|doi=10.1016/s0092-8674(01)00232-x}} 15. ^1 2 {{cite journal|author1=Lee, K. |author2=Dunlap, J. C. |author3=Loros, J. J. |title=Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa|journal=Genetics|volume= 163|issue=1|pages= 103–14 |year=2003|pmid=12586700|pmc=1462414}} 16. ^1 {{cite journal|author1=Gardner, G. F. |author2=Feldman, J. F.|title=The frq locus in Neurospora crassa: A key element in circadian clock organization|journal=Genetics|volume= 96|issue=4|pages=877–86 |year=1980|pmid=6455327|pmc=1219306}} 17. ^1 {{cite journal|author1=Hunt, S. M. |author2=Thompson, S. |author3=Elvin, M. |author4=Heintzen, C. |title=VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora|journal=Proceedings of the National Academy of Sciences of the United States of America|volume= 107|issue=38|pages= 16709–14|year=2010|pmid=20807745|pmc=2944716|doi=10.1073/pnas.1009474107}} 18. ^1 {{cite journal|doi= 10.1021/bi3015373|pmid= 23252338|title= Light-Induced Subunit Dissociation by a Light–Oxygen–Voltage Domain Photoreceptor from Rhodobacter sphaeroides|journal= Biochemistry|volume= 52|issue= 2|pages= 378–91|year= 2013|last1= Conrad|first1= Karen S.|last2= Bilwes|first2= Alexandrine M.|last3= Crane|first3= Brian R.|pmc=3582384}} 19. ^1 {{cite journal|doi= 10.1099/mic.0.054700-0|title= Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides|journal= Microbiology|volume= 158|issue= 2|pages= 368–379|year= 2011|last1= Metz|first1= S.|last2= Jager|first2= A.|last3= Klug|first3= G.|pmid=22053008}} }} 4 : Sensory receptors|Signal transduction|Molecular biology|Plant physiology |
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。