请输入您要查询的百科知识:

 

词条 Leonite
释义

  1. Properties

     Crystal structure  Phase changes  Temperature effects  Other physical properties 

  2. Formation

  3. Reactions

  4. Natural occurrence

  5. Use

  6. Related

  7. Gallery

  8. References

  9. External links

{{infobox mineral
| name = Leonite
| image = Leonite-Halite-112539.jpg
| alt = leonite as white pseudomorphs after sharp freestanding picromerite crystals sizes to 2 cm, perched on a matrix of crystallized halite. 5.5 x 4.7 x 3.4 cm
| caption = Leonite
| category = Sulfate mineral
| formula = K2Mg(SO4)2·4H2O
| molweight = 366.69 g/mol
| strunz = 7.CC.55
| dana = 29.03.03.01
| system = Monoclinic
| class = Prismatic (2/m)
(same H-M symbol)
| symmetry = C2/m
| unit cell = a = 11.78, b = 9.53
c = 9.88 [Å]; β = 95.4°; Z = 4
| color = White to colorless, yellow
| colour =
| habit = Tabular crystals
| twinning = {100}
| cleavage = none
| fracture = conchoidal
| tenacity =
| mohs = 2.5 - 3
| luster = Vitreous or Waxy
| streak = White
| diaphaneity = Transparent to translucent
| gravity = 2.201
| density =
| polish =
| opticalprop = Biaxial (+)
| refractive = nα = 1.479 nβ = 1.482 nγ = 1.487
| birefringence = δ = 0.008
| pleochroism =
| 2V = Measured: 90° Calc: 76°
| dispersion = none
| extinction =
| length fast/slow =
| fluorescence =
| absorption =
| melt =
| fusibility = easy
| diagnostic =
| solubility =
| impurities =
| alteration =
| other = Leonit, 钾镁矾, Leonita, Леонит, Kalium-Astrakanit, Kalium-Blödit
| references = [1][2]

}}Leonite is a hydrated double sulfate of magnesium and potassium. It has the formula K2SO4·MgSO4·4H2O. The mineral was named after Leo Strippelmann, who was director of the salt works at Westeregeln in Germany.[3] The mineral is part of the blodite group of hydrated double sulfate minerals.[2]

Properties

Leonite has a bitter taste.[4]

When leonite is analyzed for elements, it is usually contaminated with sodium and chloride ions, as it commonly occurs with sodium chloride.[4]

Crystal structure

In the mineral family of leonite, the lattice contains sulfate tetrahedrons, a divalent element in an octahedral position surrounded by oxygen, and water and univalent metal (potassium) linking these other components together. One sulfate group is disordered at room temperature. The disordered sulfate becomes fixed in position as temperature is lowered. The crystal form also changes at lower temperatures, so two other crystalline forms of leonite exist at lower temperatures.[7]

The divalent metal cation (magnesium) is embedded in oxygen octahedra, four from water around the equator, and two from sulfate ions at the opposite poles. In the crystal there are two different octahedral environments. Each of these octahedra are joined together by potassium ions and hydrogen bonds.[5]

Phase changes

The sulfate occurs in layers parallel to the (001) surface. In the room temperature form, the sequence is ODODODODOD with O=ordered, and D=disordered. In the next form at lower temperatures, the disordered sulfate appears in two different orientations giving the sequence OAOBOAOBOAOBOAOB. At the lowest temperatures, the sequence simplifies to OAOAOAOAOAO.[6]

The first phase transition happens at -4 °C.[7] At {{convert|170|K|C}}, the crystals have space group I2/a, lattice parameters a = 11.780 Å, b = 9.486 Å, c = 19.730 Å, β = 95.23°, 8 formula per unit cell, and a cell volume of V = 2195.6 Å3.[7] The c dimension and unit cell volume are doubled due to the presence of four sulfate layers rather than two as in the other forms.[6] The next phase change happens at -153 °C.[7] At {{convert|100|K|C}}, the space group is P21/a, a = 11.778 Å, b = 9.469 Å, c = 9.851 Å, β = 95.26°, 4 formula per unit cell, and a cell volume of V = 1094.01 Å3.[8]

Temperature effects

As temperature increases, the cell volume gradually increases for the I2/a and C2/m phases; however, the a dimension decreases with increasing temperature. The change in a dimension is −11×10−6 K−1.[7] Birefringence drops as temperature rises. It varies from 0.0076 at −150 °C down to 0.0067 at 0 °C and 0.0061 at 100 °C.[7] At the lower phase transition, birefringence steps down as the temperature drops; for the upper phase transition, it is continuous but not constant.[7]

At the upper phase transition, −4 °C, latent heat is released, and the heat capacity changes. This transition has a fair bit of hysteresis. At the lower phase transition, heat capacity stays the same, but latent heat is released.[7]

Leonite starts to lose water at 130 °C, but only really breaks down at 200 °C:[4]

K2Mg(SO4)2·4H2O(s) → K2Mg(SO4)2·2H2O(s) + 2H2O(g).

At even higher temperatures, langbeinite and arcanite (anhydrous potassium sulfate) and steam are all that remain:[4][9]

2K2Mg(SO4)2·4H2O(s) → K2Mg2(SO4)3(s) + K2SO4(s) + 8H2O(g).

Other physical properties

The logarithmic solubility product Ksp for leonite is −9.562 at 25 °C.[10] The equilibrium constant log K at 25 °C is −3.979.[11] The chemical potential of leonite is μj°/RT = −1403.97.[12]

Thermodynamic properties include ΔfGok = −3480.79 kJ mol−1; ΔfHok = −3942.55 kJ mol−1; and ΔCop,k = 191.32 J K−1 mol−1.[13]

The infrared spectrum of sulfate stretching modes shows peaks in absorption at 1005, 1080, 1102, 1134 and 1209 cm−1. Sulfate bending mode causes a peak at 720, and lesser peaks at 750 and 840 cm−1. An OH stretching mode absorbs at 3238 cm−1. When temperatures reduce, the peaks move and/or narrow, and additional peaks may appear at phase transitions.[5]

When leonite is stored for exhibition, it must not be in a place with too much humidity, otherwise it hydrates more.[14]

Formation

Starting in 1897, Jacobus Henricus van 't Hoff investigated how different salts were formed as sea water evaporated in different conditions. His purpose was to discover how salt deposits are formed. His research formed the basis for the studies of the conditions in which leonite is formed.[15]

Leonite can form when a water solution of potassium sulfate and magnesium sulfate is concentrated between the temperature range of {{convert|320|-|350|K|C}}. Above this temperature range, langbeinite (K2Mg2(SO4)3) is formed. Below {{convert|320|K|C}}, picromerite (K2Mg(SO4)2·6H2O) crystallises.[16] For solutions with more than 90% proportion MgSO4, hexahydrite (MgSO4·6H2O) crystallises preferentially, and below 60%, arcanite (K2SO4) forms.[16]

In mixtures of potassium chloride, potassium sulfate, magnesium chloride and magnesium sulfate at 35 °C in water, leonite can crystallise out in a certain composition range. The plot of the system forms boundaries of leonite with potassium chloride, potassium sulfate, and picromerite. As magnesium is enriched, a quadruple point with kainite exists.[17]

In salt (NaCl) saturated brine, leonite can be deposited from magnesium and potassium sulfate mixtures as low as 25 °C. The 25 °C isotherm of the system has leonite surrounded by sylvine, picromerite, astrakanite, epsomite, and kainite. Sodium chloride saturated brines are formed by seawater evaporation, though seawater does not contain enough potassium to deposite leonite this way.[18]

Leonite is precipitated in series solar ponds at the Great Salt Lake.[19]

When picromerite is heated to between 85 and 128 °C, it gives off steam to give leonite:[20][21]

K2Mg(SO4)2·6H2O(s) → K2Mg(SO4)2·4H2O(s) + 2H2O(g).

Reactions

When leonite is dissolved in nitric acid and then crystallised, an acid potassium magnesium double sulfate is formed: KHMg(SO4)2·2H2O.[22]

Leonite heated with hydrated magnesium sulfate in an equimolar ratio at 350 °C produces langbeinite:[23]

K2Mg(SO4)2·4H2O(s) + MgSO4·xH2O(s) → K2Mg2(SO4)3(s) + (4 + x)H2O(g).

Potassium chloride solution can convert leonite to solid potassium sulfate:[38]

2KCl(aq) + K2Mg(SO4)2·4H2O(s) → 2K2SO4(s) + MgCl2(aq).

More potassium sulfate can be precipitated by adding ethylene glycol.[24]

Fluorosilicic acid in water reacts with leonite to produce insoluble potassium fluorosilicate and a solution of magnesium sulfate and sulfuric acid:[25]

H2SiF6(aq) + K2Mg(SO4)2·4H2O(s) → K2SiF6(s) + MgSO4(aq) + H2SO4(aq).

Between 15 and 30 °C, a 22% magnesium chloride solution will react with leonite or picromerite to yield solid potassium chloride and hydrated magnesium sulfate.[26]

Natural occurrence

Leonite can form during the dehydration of seawater or lakewater. Leonite can be a minor primary constituent of evaporite potash deposits, or a secondary mineral.[27] In order to form leonite from seawater, the brine must separate from the deposited solids so that reactions do not happen with earlier deposited salts, and the temperature must be around 32 °C. Below 25° or above 40°, the content of the brine will not be suitable to deposit leonite.[27] At this temperature, blodite deposits first, and then leonite, constituting only 3.2% of the bittern salts.[27]

Secondary reactions can produce or consume leonite in evaporite deposits. Leonite can convert to polyhalite, and kieserite can be changed to leonite,[27] Groundwater penetrating bittern salt deposits can convert some to leonite, particularly in the cap regions of salt domes.[27]

Leonite was first found in nature in the Stassfurt Potash deposit, Westeregeln, Egeln, Saxony-Anhalt, Germany.[1] The Stassfurt salt deposits are from the Permian period. They are under the Magdeburg-Halberstadt region in central Germany. The leonite occurs in the salt clay and carnallite beds, which are up to 50 meters thick.[28] Other locations in Germany are the Neuhof-Ellers Potash Works in Neuhof, Fulda, Hesse; the Riedel Potash Works in Riedel-Hänigsen, Celle, Lower Saxony; Aschersleben; Vienenburg; and Leopoldshall.[1] Outside Germany, it is found at Vesuvius, Italy; Stebnyk, Ukraine; and the Carlsbad potash district, Eddy County, New Mexico, US. It is found in crystalline speleothems in Tăuşoare Cave in Romania; here it occurs with konyaite (K2Mg(SO4)2·5H2O), syngenite (K2Ca(SO4)2·H2O), thenardite (Na2SO4), and mirabilite (Na2SO4·10H2O).[29] Leonite also occurs in Wooltana Cave, Flinders Ranges, South Australia.[30]

Soil in the Gusev Crater on Mars contains leonite as well as many other hydrated sulfates.[31] On Europa, leonite is predicted to be stable, with a vapour pressure 10−13 that of ice. It is stable at pressures up to 10−7, above which a more hydrated salt exists. It should form up to 2% of the salts near the surface.[32]

Weathering of potassium-rich medieval glass forms a weathering crust that can contain leonite.[33]

Use

Leonite can be used directly as a fertilizer, contributing potassium and magnesium. It can be refined to K2SO4 for fertilizer use.[34] The process to convert leonite to potassium sulfate involves mixing it with a potassium chloride (a cheaper chemical) solution. The desired product, potassium sulfate, is less soluble and is filtered off. Magnesium chloride is very soluble in water. The filtrate is concentrated by evaporation, where more leonite crystallises, which is then recycled to the start of the process, adding more langbeinite or picromerite.[35]

Leonite may have been used in an alchemical formula to make "potable gold" around 300 AD in China. This was likely to be a liquid colloid of gold.[36]

Related

Leonite is isotypic with the mineral mereiterite (K2Fe(SO4)2·4H2O), and with artificial Mn-leonite (K2Mn(SO4)2·4H2O). Others with the same crystal structure include:

K2Cd(SO4)2·4H2O

(NH4)2Mg(SO4)2·4H2O

(NH4)2Mn(SO4)2·4H2O

(NH4)2Fe(SO4)2·4H2O

(NH4)2Co(SO4)2·4H2O and

K2Mg(SeO4)2·4H2O.[37]

Myron Stein suggested using the name "leonite" for element 96, naming it after the constellation Leo. This name was not accepted and curium was the name assigned.[38]

Gallery

References

1. ^Mindat.org
2. ^Leonite Webmineral data
3. ^{{cite web|title=Leonite|url=http://rruff.info/doclib/hom/leonite.pdf|publisher=Mineral Data Publishing|date=2005}}
4. ^{{cite journal|last1=Bilonizhka|first1=P.|title=Leonite in Pre-Carpathian Evaporites and its Transformation Under Increased Temperatures|journal=Acta Mineralogica-Petrographica|date=2003|volume=1|page=14|url=http://www.mineral.hermuz.hu/act_03/pdf/014.pdf|accessdate=17 November 2015}}
5. ^{{cite journal|last1=Hertweck|first1=Birgit|last2=Libowitzky|first2=Eugen|title=Vibrational spectroscopy of phase transitions in leonite-type minerals|journal=European Journal of Mineralogy|date=1 December 2002|volume=14|issue=6|pages=1009–1017|doi=10.1127/0935-1221/2002/0014-1009|bibcode=2002EJMin..14.1009H}}
6. ^{{cite journal|last1=Libowitzky|first1=Eugen|title=Crystal Structure Dynamics: Evidence by Diffraction and Spectroscopy|url=http://hrcak.srce.hr/file/6807|journal=Croatica Chemica Acta|volume=29|issue=2|date=2006|pages=299–309}}
7. ^{{cite journal|last1=Hertweck|first1=B.|last2=Armbruster|first2=T.|last3=Libowitzky|first3=E.|title=Multiple phase transitions of leonite-type compounds: optical, calorimetric, and X-ray data|journal=Mineralogy and Petrology|date=1 July 2002|volume=75|issue=3–4|pages=245–259|doi=10.1007/s007100200027|bibcode=2002MinPe..75..245H}}
8. ^{{cite journal|last1=Hertweck|first1=Birgit|last2=Giester|first2=Gerald|last3=Libowitzky|first3=Eugen|title=The crystal structures of the low-temperature phases of leonite-type compounds, K2 Me(SO4)2 ·4H2O (Me = Mg, Mn, Fe)|journal=American Mineralogist|date=October 2001|volume=86|issue=10|pages=1282–1292|doi=10.2138/am-2001-1016|bibcode=2001AmMin..86.1282H}}
9. ^{{cite journal|last1=Balić-Žunić|first1=Tonči|last2=Birkedal|first2=Renie|last3=Katerinopoulou|first3=Anna|last4=Comodi|first4=Paola|title=Dehydration of blödite, Na2Mg(SO4)2(H2O)4, and leonite, K2Mg(SO4)2(H2O)4|journal=European Journal of Mineralogy|date=20 September 2015|doi=10.1127/ejm/2015/0027-2487|url=http://eurjmin.geoscienceworld.org/content/early/2015/09/14/ejm.2015.0027-2487.abstract|volume=28|issue=1|pages=33–42|bibcode=2016EJMin..28...33B}}
10. ^{{cite journal|last1=Kwok|first1=Kui S.|last2=Ng|first2=Ka M.|last3=Taboada|first3=Maria E.|last4=Cisternas|first4=Luis A.|title=Thermodynamics of salt lake system: Representation, experiments, and visualization|journal=AIChE Journal|date=March 2008|volume=54|issue=3|pages=706–727|doi=10.1002/aic.11421|url=http://www.uantof.cl/d2p/Ph.%20D.%20Luis%20Cisternas/Articles/Thermodynamics%20of%20salt%20lake%20system.pdf}} table 7 on page 716
11. ^{{cite journal|last1=Plummer|first1=L. N.|last2=Parkhurst|first2=D. L.|last3=Fleming|first3=G. W.|last4=Dunkle|first4=S. A.|title=A Computer Program Incorporating Pitzer's Equations for Calculation of Geochemical Reactions in Brines|journal=Water-Resources Investigation Report|date=1988|number=88–4153|page=8|url=http://pubs.usgs.gov/wri/1988/4153/report.pdf|accessdate=28 November 2015}}
12. ^{{cite journal|last1=Harvie|first1=Charles E.|last2=Weare|first2=John H.|title=The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25 °C|journal=Geochimica et Cosmochimica Acta|date=July 1980|volume=44|issue=7|pages=981–997|doi=10.1016/0016-7037(80)90287-2|bibcode=1980GeCoA..44..981H}}
13. ^{{cite journal|last1=Bhattacharia|first1=Sanjoy K.|last2=Tanveer|first2=Sheik|last3=Hossain|first3=Nazir|last4=Chen|first4=Chau-Chyun|title=Thermodynamic modeling of aqueous Na+–K+–Mg2+–SO42− quaternary system|journal=Fluid Phase Equilibria|date=October 2015|volume=404|pages=141–149|doi=10.1016/j.fluid.2015.07.002}}
14. ^{{cite book|last1=Thompson|first1=John M.A.|title=Manual of curatorship : a guide to museum practice|date=1992|publisher=Butterworth-Heinemann|location=Oxford|isbn=978-0750603515|page=431|edition=2nd|url=https://books.google.com/books?id=9gAwCgAAQBAJ&pg=PA431|accessdate=24 November 2015}}
15. ^{{cite book|last1=Whetham|first1=William Cecil Dampier|title=A Treatise on the Theory of Solutions|series=Cambridge Natural Science Manuals|date=1902|publisher=The University Press|location=Cambridge|pages=403–406|url=https://books.google.com/books?id=8-g8AAAAIAAJ&pg=PA405|accessdate=23 November 2015}}
16. ^{{cite journal|last1=Wollmann|first1=Georgia|last2=Voigt|first2=Wolfgang|title=Solid–liquid phase equilibria in the system K2SO4–MgSO4–H2O at 318K|journal=Fluid Phase Equilibria|date=May 2010|volume=291|issue=2|pages=151–153|doi=10.1016/j.fluid.2009.12.005}}
17. ^{{cite journal|last1=Susarla|first1=V. R. K. S.|last2=Seshadri|first2=K.|title=Equilibria in the system containing chloride and sulphates of potassium and magnesium|journal=Proceedings of the Indian Academy of Sciences - Chemical Sciences|date=August 1982|volume=91|issue=4|pages=315–320|doi=10.1007/BF02842643|url=https://link.springer.com/article/10.1007/BF02842643|doi-broken-date=2019-03-14}}
18. ^{{cite journal|last1=M'nif|first1=A.|last2=Rokbani|first2=R.|title=Minerals successions crystallisation related to tunisian natural brines|journal=Crystal Research and Technology|date=January 2004|volume=39|issue=1|pages=40–49|doi=10.1002/crat.200310147}}
19. ^{{cite book|last1=Butts|first1=D.S.|editor1-last=Wallace Gwynn|editor1-first=J.|title=Great Salt Lake, a Scientific, Historical, and Economic Overview|date=June 1980|publisher=Utah Geological Survey|page=172|chapter-url=https://books.google.com/books?id=w55U-YtutS8C&pg=PA172|chapter=Chemistry of Great Salt Lake Brines in Solar Ponds|isbn=9781557910837}}
20. ^{{cite journal|last1=Dhandapani|first1=M.|last2=Thyagu|first2=L.|last3=Prakash|first3=P. Arun|last4=Amirthaganesan|first4=G.|last5=Kandhaswamy|first5=M. A.|last6=Srinivasan|first6=V.|title=Synthesis and characterization of potassium magnesium sulphate hexahydrate crystals|journal=Crystal Research and Technology|date=April 2006|volume=41|issue=4|pages=328–331|doi=10.1002/crat.200510582}}
21. ^{{cite journal|last1=Song|first1=Yuehua|last2=Xia|first2=Shupin|last3=Wang|first3=Haidong|last4=Gao|first4=Shiyang|title=Thermal behavior of double salt schoenite|journal=Journal of Thermal Analysis|date=July 1995|volume=45|issue=1–2|pages=311–316|doi=10.1007/bf02548695}}
22. ^{{cite journal|last1=Meyerhoffer|first1=Wilhelm|last2=Cottrell|first2=F. G.|title=An Acid Triple Salt|journal=Journal of the Chemical Society, Abstracts|date=1901|volume=80|page=552|doi=10.1039/CA9018005548}} Originally in Zeit. Anorg. Chem. 1901, 27, 442-444.
23. ^{{cite patent| country = US| number = 3726965| status = | title = Production of langbeinite from a potassium magnesium sulfate salt and magnesium sulfate| pubdate = 10 April 1973 | invent1 = F. Andreasen | invent2 = U. Neitzel}}
24. ^{{cite patent| country = US| number = 4195070|title=Preparation of a MgCl2 solution for Nalco's MgCl2 process from MgSO4 and other MgSO4 salts|pubdate=25 March 1980|invent1=Ronald J. Allain|invent2=David G. Braithwaite|invent3=Joseph P. Maniscalco}}
25. ^{{cite patent| country = US| number = 3082061| status = | title = Production of potassium fluosilicate| pubdate = 19 March 1960 | invent1 = Raymond L. Barry | invent2 = Woodrow W. Richardson }}
26. ^{{cite patent| country = US| number = 3533735| status = | title = Production of potassium chloride from schoenite and from brines containing potassium, magnesium, chloride and sulfate | pubdate = 13 October 1970 | invent1 = Jerome A. Lukes}}
27. ^{{cite book|last1=Stewart|first1=Frederick H.|editor1-last=Fleischer|editor1-first=Michael|title=Data of Geochemistry|date=1963|publisher=United States Government Printing Office|location=Washington|page=Y10–Y25|edition=6|chapter-url=http://pubs.usgs.gov/pp/0440y/report.pdf|chapter=Y. Marine Evaporites}}
28. ^{{cite book|last1=Iglesrud|first1=Iver|title=Physics of the Earth V Oceanography|date=June 1932|publisher=National Research Council of the National Academy of Sciences|location=Washington DC|pages=184–195|chapter=Formation of Oceanic Salt Deposits|chapter-url=https://books.google.com/books?id=masrAAAAYAAJ&pg=PA184}}
29. ^{{cite journal|last1=Onac|first1=B. P.|last2=White|first2=W. B.|last3=Viehmann|first3=I.|title=Leonite [K2Mg(SO4)2·4H2O], konyaite [Na2Mg(SO4)2·5H2O] and syngenite [K2Ca(SO4)2·H2O] from Tausoare Cave, Rodnei Mts, Romania|journal=Mineralogical Magazine|date=February 2001|volume=65|issue=1|pages=103–109|doi=10.1180/002646101550154|bibcode=2001MinM...65..103O}}
30. ^{{cite journal|last1=Snow|first1=Michael|last2=Pring|first2=Allan|last3=Allen|first3=Nicole|title=Minerals of the Wooltana Cave, Flinders Ranges, South Australia|journal=Transactions of the Royal Society of South Australia|date=November 2014|volume=138|issue=2|pages=214–230|doi=10.1080/03721426.2014.11649009}}
31. ^{{cite journal|last1=Lane|first1=M. D.|last2=Bishop|first2=J. L.|last3=Darby Dyar|first3=M.|last4=King|first4=P. L.|last5=Parente|first5=M.|last6=Hyde|first6=B. C.|title=Mineralogy of the Paso Robles soils on Mars|journal=American Mineralogist|date=1 May 2008|volume=93|issue=5–6|pages=728–739|doi=10.2138/am.2008.2757|url=https://www.researchgate.net/publication/259313380|accessdate=14 November 2015|bibcode=2008AmMin..93..728L}}
32. ^{{cite journal|last1=Zolotov|first1=M. Yu.|last2=Shock|first2=E. L.|title=Thermodynamic Stability of Hydrated Salts on the Surface of Europa|journal=Lunar and Planetary Science|volume=XXXI|pages=1843|url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1843.pdf|bibcode=2000LPI....31.1843Z|year=2000}}
33. ^{{cite journal|last1=Woisetschläger|first1=Gebhard|last2=Dutz|first2=Myriam|last3=Paul|first3=Sabine|last4=Schreiner|first4=Manfred|title=Weathering Phenomena on Naturally Weathered Potash-Lime-Silica-Glass with Medieval Composition Studied by Secondary Electron Microscopy and Energy Dispersive Microanalysis|journal=Microchimica Acta|date=27 November 2000|volume=135|issue=3–4|pages=121–130|doi=10.1007/s006040070001}}
34. ^{{cite book|last1=Foot|first1=D. G.|last2=Huiatt|first2=J. L.|last3=Froisland|first3=L. J.|title=Potash Recovery from Process and Waste Brines by Solar Evaporation and Flotation|date=1984|publisher=Bureah of Mines, United States Department of Interior|page=2|url=http://stacks.cdc.gov/view/cdc/10630/cdc_10630_DS1.pdf}}
35. ^{{cite book|last1=Kirk|first1=Raymond Eller|last2=Othmer|first2=Donald Frederick|title=Kirk-Othmer Encyclopedia of Chemical Technology Volume 19 Pigments to Powders, Handling|date=1995|page=531|edition=4th|publisher=John Wiley}}
36. ^{{cite book|last1=Ping-Yü|first1=Ho|last2=Gwei-Djen|first2=Lu|last3=Needham|first3=Joseph|title=Science and civilisation in China.|date=1976|publisher=Cambridge University Press|location=Cambridge|isbn=978-0521210287|pages=75–98|edition=Reprinted|url=https://books.google.com/books?id=4sTb1KsvupgC&pg=PA89}}
37. ^{{cite journal|last1=Giester|first1=Gerald|last2=Rieck|first2=Branko|title=Mereiterite, K2Fe[SO4]2·4H2O, a new leonite-type mineral from the Lavrion Mining District, Greece|journal=European Journal of Mineralogy|date=19 May 1995|volume=7|issue=3|pages=559–566|doi=10.1127/ejm/7/3/0559|bibcode=1995EJMin...7..559G}}
38. ^{{cite journal|last1=Seaborg|first1=Glenn T.|title=Terminology of the transuranium elements|journal=Terminology|date=1994|volume=1|issue=2|pages=229–252|doi=10.1075/term.1.2.02sea}}

External links

{{Commons category|Leonite}}
  • {{cite web|url=http://www.phasediagram.dk/ternary/ternary3.htm|title=Aqueous Salt Solutions The MgSO4-K2SO4-H2O system}}
  • {{cite journal|last1=Starrs|first1=B. A.|last2=Storch|first2=H. H.|title=The Ternary System: Potassium Sulphate-Magnesium Sulphate-Water|journal=The Journal of Physical Chemistry|date=January 1929|volume=34|issue=10|pages=2367–2374|doi=10.1021/j150316a019}} public domain but paywalled
  • {{cite journal|last1=Madsen|first1=Beth M.|title=Loweite, Vanthoffite, Bloedite, and Leonite from Southeastern New Mexico|journal=Geological Survey Professional Paper|date=1966|volume=550|issue=2|pages=B125–B129|url=https://books.google.com/books?id=4holAQAAIAAJ&pg=SL2-PA125|accessdate=14 November 2015}}
  • {{cite book|last1=Eberhard|first1=Usdowski|last2=Bach|first2=Martin F.|title=Atlas and Data of Solid-Solution Equilibria of Marine Evaporites|date=1998|publisher=Springer Science & Business Media|page=263|url=https://books.google.com/books?id=gxX_CAAAQBAJ&pg=PA263|isbn=9783642643354|doi=10.1007/9783642602849|doi-broken-date=2019-03-14}} includes 3D diagram of temperature vs Mg/K and Cl/SO4 with leonite showing up as a lozenge shaped cylinder

4 : Sulfate minerals|Potassium minerals|Magnesium minerals|Monoclinic minerals

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 17:13:42