释义 |
- List
- References
{{see also|Glossary of graph theory terms}}This sortable list points to the articles describing various individual (finite) graphs[1]. The columns 'vertices', 'edges', 'radius', 'diameter', 'girth', 'P' (whether the graph is planar), χ (chromatic number) and χ' (chromatic index) are also sortable, allowing to search for a parameter or another. {{Commons category|Graphs by number of vertices}}See also Graph theory for the general theory, as well as Gallery of named graphs for a list with illustrations. List name | vertices | edges | radius | diam. | girth | P | χ | χ' |
---|
Iofinova-Ivanov-110-vertex | 110 | 165 | 7 | 7 | 10 | F | 2 | 3 | 120-cell | 600 | 1200 | 15 | 15 | 5 | F | 3 | 4 | Balaban 3-10-cage | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 | Balaban 3-11-cage | 112 | 168 | 6 | 8 | 11 | F | 3 | 3 | Bidiakis cube | 12 | 18 | 3 | 3 | 4 | T | 3 | 3 | Biggs–Smith graph | 102 | 153 | 7 | 7 | 9 | F | 3 | 3 | Blanuša snarks | 18 | 27 | 4 | 4 | 5 | F | 3 | 4 | Brinkmann graph | 21 | 42 | 3 | 3 | 5 | T | 4 | 5 | Brouwer–Haemers graph | 81 | 810 | 2 | 2 | 3 | F | 7 | 21 | Bull graph | 5 | 5 | 2 | 3 | 3 | T | 3 | 3 | Butterfly graph | 5 | 6 | 1 | 2 | 3 | T | 3 | 4 | Cameron graph | 231 | 3465 | 2 | 2 | 3 | F | N/A | N/A | Chang graphs | 28 | 168 | 2 | 2 | 3 | F | 7 | 12 | Chvátal graph | 12 | 24 | 2 | 2 | 4 | F | 4 | 4 | Clebsch graph | 16 | 40 | 2 | 2 | 4 | F | 4 | 5 | Coxeter graph | 28 | 42 | 4 | 4 | 7 | F | 3 | 3 | Cubical graph | 8 | 12 | 3 | 3 | 4 | T | 2 | 3 | Cuboctahedral graph | 12 | 24 | 3 | 3 | 3 | T | 3 | 4 | Dejter graph | 112 | 336 | 7 | 7 | 4 | F | N/A | N/A | Desargues graph | 20 | 30 | 5 | 5 | 6 | F | 2 | 3 | Descartes snark | 210 | 315 | N/A | N/A | 5 | N/A | N/A | 4 | Diamond graph | 4 | 5 | 1 | 2 | 3 | T | 3 | 3 | Dodecahedral graph (20-fullerene) | 20 | 30 | 5 | 5 | 5 | T | 3 | 3 | Double-star snark | 30 | 45 | 4 | 4 | 6 | F | 3 | 4 | Dürer graph | 12 | 18 | 3 | 4 | 3 | T | 3 | 3 | Dyck graph | 32 | 48 | 5 | 5 | 6 | F | 2 | 3 | Ellingham–Horton 54-graph | 54 | 81 | 9 | 10 | 6 | F | 2 | 3 | Ellingham–Horton 78-graph | 78 | 117 | 7 | 13 | 6 | F | 2 | 3 | Errera graph | 17 | 45 | 3 | 4 | 3 | T | 4 | 6 | F26A graph | 26 | 39 | 5 | 5 | 6 | F | 2 | 3 | Flower snark J(5) | 20 | 30 | 4 | 4 | 5 | F | 3 | 4 | Folkman graph | 20 | 40 | 3 | 4 | 4 | F | 2 | 4 | Foster 5-5-cage | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 | Foster graph | 90 | 135 | 8 | 8 | 10 | F | 2 | 3 | Franklin graph | 12 | 18 | 3 | 3 | 4 | F | 2 | 3 | Fritsch graph | 9 | 21 | 2 | 2 | 3 | T | 4 | 6 | Frucht graph | 12 | 18 | 3 | 4 | 3 | T | 3 | 3 | Gewirtz graph | 56 | 280 | 2 | 2 | 4 | F | 4 | 10 | 26-fullerene graph (26-fullerene) | 26 | 39 | 5 | 6 | 5 | T | 3 | 3 | Goldner–Harary graph | 11 | 27 | 2 | 2 | 3 | T | 4 | 8 | Golomb graph | 10 | 18 | 2 | 3 | 3 | T | 4 | 6 | Gosset graph | 56 | 756 | 3 | 3 | 3 | F | 14 | 27 | Gray graph | 54 | 81 | 6 | 6 | 8 | F | 2 | 3 | Grötzsch graph | 11 | 20 | 2 | 2 | 4 | F | 4 | 5 | Hall–Janko graph | 100 | 1800 | 2 | 2 | 3 | F | 10 | 36 | Harborth graph | 52 | 104 | 6 | 9 | 3 | T | 3 | 4 | Harries graph | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 | Harries–Wong graph | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 | Heawood 3-6-cage graph | 14 | 21 | 3 | 3 | 6 | F | 2 | 3 | Herschel graph | 11 | 18 | 3 | 4 | 4 | T | 2 | 4 | Hexagonal truncated trapezohedron (24-fullerene) | 24 | 36 | 5 | 5 | 5 | T | 3 | 3 | Higman–Sims graph | 100 | 1100 | 2 | 2 | 4 | F | 6 | 22 | Hoffman graph | 16 | 32 | 3 | 4 | 4 | F | 2 | 4 | Hoffman–Singleton 7-5-cage graph | 50 | 175 | 2 | 2 | 5 | F | 4 | 7 | Holt graph | 27 | 54 | 3 | 3 | 5 | F | 3 | 5 | Horton graph | 96 | 144 | 10 | 10 | 6 | F | 2 | 3 | Icosahedral graph | 12 | 30 | 3 | 3 | 3 | T | 4 | 5 | Icosidodecahedral graph | 30 | 60 | 5 | 5 | 3 | T | 3 | 4 | Kittell graph | 23 | 63 | 3 | 4 | 3 | T | 4 | 7 | Klein graph (cubic) | 56 | 84 | 6 | 6 | 7 | F | 3 | 3 | Klein graph (7-valent) | 24 | 84 | 3 | 3 | 3 | F | 4 | 7 | Krackhardt kite graph | 10 | 18 | 2 | 4 | 3 | T | 4 | 6 | Livingstone graph | 266 | 1463 | 4 | 4 | 5 | F | N/A | 11 | Ljubljana graph | 112 | 168 | 7 | 8 | 10 | F | 2 | 3 | Loupekine snark (first) | 22 | 33 | 3 | 4 | 5 | F | 3 | 4 | Loupekine snark (second) | 22 | 33 | 3 | 4 | 5 | F | 3 | 4 | Markström graph | 24 | 36 | 5 | 6 | 3 | T | 3 | 3 | McGee graph | 24 | 36 | 4 | 4 | 7 | F | 3 | 3 | McLaughlin graph | 275 | 15400 | 2 | 2 | 3 | F | N/A | 113 | Meredith graph | 70 | 140 | 7 | 8 | 4 | F | 3 | 5 | Meringer 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 3 | 5 | Möbius–Kantor graph | 16 | 24 | 4 | 4 | 6 | F | 2 | 3 | Moser spindle | 7 | 11 | 2 | 2 | 3 | T | 4 | 4 | Nauru graph | 24 | 36 | 4 | 4 | 6 | F | 2 | 3 | Null graph | 0 | 0 | 0 | 0 | N/A | T | 0 | 0 | Octahedral graph | 6 | 12 | 2 | 2 | 3 | T | 3 | 4 | Paley graph of order 13 | 13 | 39 | 2 | 2 | 3 | F | 5 | 7 | Pappus graph | 18 | 27 | 4 | 4 | 6 | F | 2 | 3 | Perkel graph | 57 | 171 | 3 | 3 | 5 | F | 3 | 7 | Petersen 3-5-cage graph | 10 | 15 | 2 | 2 | 5 | F | 3 | 4 | Poussin graph | 15 | 39 | 3 | 3 | 3 | T | 4 | 6 | Rhombicosidodecahedral graph | 60 | 120 | 8 | 8 | 3 | T | 3 | 4 | Rhombicuboctahedral graph | 24 | 48 | 5 | 5 | 3 | T | 3 | 4 | Robertson 4-5-cage graph | 19 | 38 | 3 | 3 | 5 | F | 3 | 5 | Robertson–Wegner 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 | Schläfli graph | 27 | 216 | 2 | 2 | 3 | F | 9 | 17 | Shrikhande graph | 16 | 48 | 2 | 2 | 3 | F | 4 | 6 | Snub cubical graph | 24 | 60 | 4 | 4 | 3 | T | 3 | 5 | Snub dodecahedral graph | 60 | 150 | 7 | 7 | 3 | T | 4 | 5 | Sousselier graph | 16 | 27 | 2 | 3 | 5 | F | 3 | 5 | Sylvester graph | 36 | 90 | 3 | 3 | 5 | F | 4 | 5 | Szekeres snark | 50 | 75 | 6 | 7 | 5 | F | 3 | 4 | Tetrahedral graph | 4 | 6 | 1 | 1 | 3 | T | 4 | 3 | Thomsen graph | 6 | 9 | 2 | 2 | 4 | F | 2 | 3 | Tietze's graph | 12 | 18 | 3 | 3 | 3 | F | 3 | 4 | Triangle graph | 3 | 3 | 1 | 1 | 3 | T | 3 | 3 | Truncated cubical graph | 24 | 36 | 6 | 6 | 3 | T | 3 | 3 | Truncated cuboctahedral graph | 48 | 72 | 9 | 9 | 4 | T | 2 | 3 | Truncated dodecahedral graph | 60 | 90 | 10 | 10 | 3 | T | 3 | 3 | Truncated icosahedral graph (60-fullerene) | 60 | 90 | 9 | 9 | 5 | T | 3 | 3 | Truncated icosidodecahedral graph | 120 | 180 | 15 | 15 | 4 | T | 2 | 3 | Truncated octahedral graph | 24 | 36 | 6 | 6 | 4 | T | 2 | 3 | Truncated tetrahedral graph | 12 | 18 | 3 | 3 | 3 | T | 3 | 3 | Tutte 3-12-cage | 126 | 189 | 6 | 6 | 12 | F | 2 | 3 | Tutte graph | 46 | 69 | 5 | 8 | 4 | T | 3 | 3 | Tutte 3-8-cage graph | 30 | 45 | 4 | 4 | 8 | F | 2 | 3 | Wagner graph | 8 | 12 | 2 | 2 | 4 | F | 3 | 3 | Watkins snark | 50 | 75 | 7 | 7 | 5 | F | 3 | 4 | Wells graph | 32 | 80 | 4 | 4 | 5 | F | 4 | 5 | Wiener–Araya graph | 42 | 67 | 5 | 7 | 4 | T | 3 | 4 | Wong 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 |
References 1. ^R. Diestel, Graph Theory, p.8. 3rd Edition, Springer-Verlag, 2005
1 : Graph families |