请输入您要查询的百科知识:

 

词条 Bone scintigraphy
释义

  1. History

  2. Principle

  3. Technique

  4. References

  5. External links

{{distinguish|Dual-energy X-ray absorptiometry}}{{Infobox diagnostic |
  Name        = Bone scintigraphy |  Image       = File:Nl bone scan2.jpg|image_size=150px|  Caption     = A nuclear medicine whole-body bone scan. The nuclear medicine whole-body bone scan is generally used in evaluations of various bone-related pathology, such as for bone pain, stress fracture, nonmalignant bone lesions, bone infections, or the spread of cancer to the bone. |  ICD10       = |  ICD9        = {{ICD9proc|92.14}} |  MeshID      = |  MedlinePlus = 003833 |  OPS301      = {{OPS301|3-705}} |  OtherCodes  = |

}}

A bone scan or bone scintigraphy {{IPAc-en|s|ɪ|n|ˈ|t|ɪ|ɡ|r|ə|f|i}} is a nuclear medicine imaging technique of the bone. It can help diagnose a number of bone conditions, including cancer of the bone or metastasis, location of bone inflammation and fractures (that may not be visible in traditional X-ray images), and bone infection.[1]

Nuclear medicine provides functional imaging and allows visualisation of bone metabolism or bone remodeling, which most other imaging techniques (such as X-ray computed tomography, CT) cannot.[2][3] Bone scintigraphy competes with positron emission tomography (PET) for imaging of abnormal metabolism in bones, but is considerably less expensive.[4] Bone scintigraphy has higher sensitivity but lower specificity than CT or MRI for diagnosis of scaphoid fractures following negative plain radiography.[5]

History

Some of the earliest investigations into skeletal metabolism were carried out by George de Hevesy in the 1930s, using phosphorus-32and by Charles Pecher in the 1940s.[6][7]

In the 1950s and 1960s calcium-45 was investigated, but as a beta emitter proved difficult to image. Imaging of positron and gamma emitters such as fluorine-18 and isotopes of strontium with rectilinear scanners was more useful.[8][9] Use of technetium-99m (99mTc) labelled phosphates, diphosphonates or similar agents, as in the modern technique, was first proposed in 1971.[10][11]

Principle

The most common radiopharmaceutical for bone scintigraphy is 99mTc with methylene diphosphonate (MDP).[12] MDP adsorbs onto the crystalline hydroxyapatite mineral of bone.[13] Mineralisation occurs at osteoblasts, representing sites of bone growth, where MDP (and other diphosphates) "bind to the hydroxyapatite crystals in proportion to local blood flow and osteoblastic activity and are therefore markers of bone turnover and bone perfusion".[14][15]

The more active the bone turnover, the more radioactive material will be seen. Some tumors, fractures and infections show up as areas of increased uptake.[16]

Technique

In a typical bone scan technique, the patient is injected (usually into a vein in the arm or hand, occasionally the foot) with up to 740 MBq of technetium-99m-MDP and then scanned with a gamma camera, which captures planar anterior and posterior or single photon emission computed tomography (SPECT) images.[17][18] In order to view small lesions SPECT imaging technique may be preferred over planar scintigraphy.[19]

In a single phase protocol (skeletal imaging alone), which will primarily highlight osteoblasts, images are usually acquired 2–5 hours after the injection (after four hours 50–60% of the activity will be fixed to bones).[17][18][20] A two or three phase protocol utilises additional scans at different points after the injection to obtain additional diagnostic information. A dynamic (i.e. multiple acquired frames) study immediately after the injection captures perfusion information.[20][21] A second phase "blood pool" image following the perfusion (if carried out in a three phase technique) can help to diagnose inflammatory conditions or problems of blood supply.[22]

A typical effective dose obtained during a bone scan is 6.3 millisieverts (mSv).[23]

References

1. ^{{cite book|last1=Bahk|first1=Yong-Whee|title=Combined scintigraphic and radiographic diagnosis of bone and joint diseases|date=2000|publisher=Springer|location=Berlin, Heidelberg|isbn=9783662041062|page=3|edition=2nd}}
2. ^{{cite journal|last1=Ćwikła|first1=Jarosław B.|title=New imaging techniques in reumathology: MRI, scintigraphy and PET|journal=Polish Journal of Radiology|date=2013|volume=78|issue=3|pages=48–56|doi=10.12659/PJR.889138|pmc=3789933|pmid=24115960}}
3. ^{{cite book|last1=Livieratos|first1=Lefteris|editor1-last=Fogelman|editor1-first=Ignac|editor2-last=Gnanasegaran|editor2-first=Gopinath|editor3-last=van der Wall|editor3-first=Hans|title=Radionuclide and hybrid bone imaging|date=2012|publisher=Springer|location=Berlin|isbn=978-3-642-02399-6|page=345|chapter=Basic Principles of SPECT and PET Imaging|doi=10.1007/978-3-642-02400-9_12}}
4. ^{{cite journal|last1=O’Sullivan|first1=Gerard J|title=Imaging of bone metastasis: An update|journal=World Journal of Radiology|date=2015|volume=7|issue=8|pages=202–11|doi=10.4329/wjr.v7.i8.202|pmid=26339464|pmc=4553252}}
5. ^{{cite journal|last1=Mallee|first1=WH|last2=Wang|first2=J|last3=Poolman|first3=RW|last4=Kloen|first4=P|last5=Maas|first5=M|last6=de Vet|first6=HC|last7=Doornberg|first7=JN|title=Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs.|journal=The Cochrane Database of Systematic Reviews|date=5 June 2015|issue=6|pages=CD010023|doi=10.1002/14651858.CD010023.pub2|pmid=26045406|doi-access=free}}
6. ^{{Cite journal|last=Pecher|first=Charles|date=1941|title=Biological Investigations with Radioactive Calcium and Strontium.|journal=Proceedings of the Society for Experimental Biology and Medicine|language=en|volume=46|issue=1|pages=86–91|doi=10.3181/00379727-46-11899|issn=0037-9727}}
7. ^{{cite journal|last1=Carlson|first1=Sten|title=A Glance At The History Of Nuclear Medicine|journal=Acta Oncologica|date=8 July 2009|volume=34|issue=8|pages=1095–1102|doi=10.3109/02841869509127236}}
8. ^{{cite journal|last1=Bridges|first1=R. L.|last2=Wiley|first2=C. R.|last3=Christian|first3=J. C.|last4=Strohm|first4=A. P.|title=An Introduction to Na18F Bone Scintigraphy: Basic Principles, Advanced Imaging Concepts, and Case Examples|journal=Journal of Nuclear Medicine Technology|date=11 May 2007|volume=35|issue=2|pages=64–76|doi=10.2967/jnmt.106.032870|pmid=17496010}}
9. ^{{cite journal|last1=Fleming|first1=William H.|last2=McIlraith|first2=James D.|last3=Richard King|first3=Capt. E.|title=Photoscanning of Bone Lesions Utilizing Strontium 85|journal=Radiology|date=October 1961|volume=77|issue=4|pages=635–636|doi=10.1148/77.4.635|pmid=13893538}}
10. ^{{cite journal|last1=Subramanian|first1=G.|last2=McAfee|first2=J. G.|title=A New Complex of 99mTc for Skeletal Imaging|journal=Radiology|date=April 1971|volume=99|issue=1|pages=192–196|doi=10.1148/99.1.192|pmid=5548678}}
11. ^{{cite book|last1=Fogelman|first1=I|title=Bone scanning in clinical practice|pages=1–6|date=2013|publisher=Springer|location=London|isbn=978-1-4471-1409-3|chapter=The Bone Scan—Historical Aspects|doi=10.1007/978-1-4471-1407-9_1}}
12. ^{{cite book|last1=Biersack|first1=Hans-Jürgen|last2=Freeman|first2=Leonard M.|last3=Zuckier|first3=Lionel S.|last4=Grünwald|first4=Frank|title=Clinical Nuclear Medicine|date=2007|publisher=Springer|location=Berlin|isbn=9783540280255|page=243}}
13. ^{{cite book|last1=Chopra|first1=A|title=Molecular Imaging and Contrast Agent Database|chapter=99mTc-Methyl diphosphonate|date=2004|pmid=20641923|publisher=National Center for Biotechnology Information (US)|chapter-url=https://www.ncbi.nlm.nih.gov/books/NBK24575/}}
14. ^{{cite journal|last1=Brenner|first1=Arnold I.|last2=Koshy|first2=June|last3=Morey|first3=Jose|last4=Lin|first4=Cheryl|last5=DiPoce|first5=Jason|title=The Bone Scan|journal=Seminars in Nuclear Medicine|date=January 2012|volume=42|issue=1|pages=11–26|doi=10.1053/j.semnuclmed.2011.07.005|pmid=22117809}}
15. ^{{cite journal|last1=Wong|first1=K. K.|last2=Piert|first2=M.|title=Dynamic Bone Imaging with 99mTc-Labeled Diphosphonates and 18F-NaF: Mechanisms and Applications|journal=Journal of Nuclear Medicine|date=12 March 2013|volume=54|issue=4|pages=590–599|doi=10.2967/jnumed.112.114298|pmid=23482667}}
16. ^{{cite journal|last1=Verberne|first1=SJ|last2=Raijmakers|first2=PG|last3=Temmerman|first3=OP|title=The Accuracy of Imaging Techniques in the Assessment of Periprosthetic Hip Infection: A Systematic Review and Meta-Analysis.|journal=The Journal of Bone and Joint Surgery. American Volume|date=5 October 2016|volume=98|issue=19|pages=1638–1645|pmid=27707850|url=http://jbjs.org/content/98/19/1638|ref=3|doi=10.2106/jbjs.15.00898}}
17. ^{{cite web|title=Procedure Guideline for Bone Scintigraphy|url=http://snmmi.files.cms-plus.com/docs/pg_ch34_0403.pdf|publisher=Society of Nuclear Medicine|date=20 June 2003}}
18. ^{{cite journal|last1=Van den Wyngaert|first1=T.|last2=Strobel|first2=K.|last3=Kampen|first3=W. U.|last4=Kuwert|first4=T.|last5=van der Bruggen|first5=W.|last6=Mohan|first6=H. K.|last7=Gnanasegaran|first7=G.|last8=Delgado-Bolton|first8=R.|last9=Weber|first9=W. A.|last10=Beheshti|first10=M.|last11=Langsteger|first11=W.|last12=Giammarile|first12=F.|last13=Mottaghy|first13=F. M.|last14=Paycha|first14=F.|title=The EANM practice guidelines for bone scintigraphy|journal=European Journal of Nuclear Medicine and Molecular Imaging|date=4 June 2016|volume=43|issue=9|pages=1723–1738|doi=10.1007/s00259-016-3415-4|pmid=27262701|doi-access=free}}
19. ^{{cite book|last1=Kane|first1=Tom|last2=Kulshrestha|first2=Randeep|last3=Notghi|first3=Alp|last4=Elias|first4=Mark|editor1-last=Wyn Jones|editor1-first=David|editor2-last=Hogg|editor2-first=Peter|editor3-last=Seeram|editor3-first=Euclid|title=Practical SPECT/CT in nuclear medicine|date=2013|publisher=Springer|location=London|isbn=9781447147039|page=197|chapter-url=https://books.google.co.uk/books?id=dVhHAAAAQBAJ&pg=PA197|chapter=Clinical Utility (Applications) of SPECT/CT}}
20. ^{{cite web|title=Clinical Guideline for Bone Scintigraphy|url=http://www.bnms.org.uk/images/BNMS_Bone_Scintigraphy_Guideline_2016.pdf|publisher=BNMS|accessdate=19 February 2017|date=2014}}
21. ^{{cite book|last1=Weissman|first1=Barbara N.|title=Imaging of arthritis and metabolic bone disease|date=2009|publisher=Mosby/Elsevier|location=Philadelphia, PA|isbn=9780323041775|page=18}}
22. ^{{cite journal|last1=Schauwecker|first1=D S|title=The scintigraphic diagnosis of osteomyelitis.|journal=American Journal of Roentgenology|date=January 1992|volume=158|issue=1|pages=9–18|doi=10.2214/ajr.158.1.1727365|pmid=1727365}}
23. ^{{cite journal|last1=Mettler|first1=Fred A.|last2=Huda|first2=Walter|last3=Yoshizumi|first3=Terry T.|last4=Mahesh|first4=Mahadevappa|title=Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog|journal=Radiology|date=July 2008|volume=248|issue=1|pages=254–263|doi=10.1148/radiol.2481071451|pmid=18566177}}

External links

  • {{cite web |url= http://www.webmd.com/hw/health_guide_atoz/hw200283.asp |title= Bone scans |work= WebMD |accessdate= July 9, 2008}}
{{Medical imaging}}{{Bone, cartilage, and joint procedures}}

4 : 2d nuclear medical imaging|3d nuclear medical imaging|Radiology|Medical imaging

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 8:08:34