词条 | Chlorophyll a | |||
释义 |
| Name = Chlorophyll a | Verifiedfields = changed | Watchedfields = changed | verifiedrevid = 451983978 | show_infobox_ref = no | ImageFile = Chlorophyll a.svg | ImageSize = | ImageName = Structure of chlorophyll a | IUPACName = Chlorophyll a | SystematicName = Magnesium [methyl (3S,4S,21R)-14-ethyl-4,8,13,18-tetramethyl-20-oxo-3-(3-oxo-3-{{(}}[(2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecen-1-yl]oxy}propyl)-9-vinyl-21-phorbinecarboxylatato(2−)-κ2N,N′] | OtherNames = α-Chlorophyll |Section1={{Chembox Identifiers | CASNo = 479-61-8 | CASNo_Ref = {{cascite|changed|CAS}} | PubChem = 6433192 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 16736115 | StdInChI = 1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32-,33-,37+,41+,51-;/m1./s1 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = ATNHDLDRLWWWCB-AENOIHSZSA-M | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | InChI = 1S/C55H73N4O5.Mg/c1-13-39-35(8)42-28-44-37(10)41(24-25-48(60)64-27-26-34(7)23-17-22-33(6)21-16-20-32(5)19-15-18-31(3)4)52(58-44)50-51(55(62)63-12)54(61)49-38(11)45(59-53(49)50)30-47-40(14-2)36(9)43(57-47)29-46(39)56-42;/h13,26,28-33,37,41,51H,1,14-25,27H2,2-12H3,(H-,56,57,58,59,61);/q-1;+2/p-1/b34-26+;/t32?,33?,37-,41-,51+;/m0./s1 | InChIKey = ATNHDLDRLWWWCB-WJQLOWBJSA-M | SMILES = CCC1=C(C2=NC1=CC3=C(C4=C([N-]3)C(=C5[C@H]([C@@H](C(=N5)C=C6C(=C(C(=C2)[N-]6)C=C)C)C)CCC(=O)OC/C=C(\\C)/CCCC(C)CCCC(C)CCCC(C)C)[C@H](C4=O)C(=O)OC)C)C.[Mg+2] | SMILES1 = COC(=O)C9C(=O)c6c(C)c3n7c6c9c2C(CCC(=O)COCC=C(C)CCCC(C)CCCC(C)CCCC(C)C)C(C)c1cc5n8c(cc4n([Mg]78n12)c(c=3)c(CC)c4c)c(C=C)c5C | UNII = YF5Q9EJC8Y | UNII_Ref = {{fdacite|changed|FDA}} | EC_number = 207-536-6 | RTECS = FW6420000 |Section2={{Chembox Properties | C=55 | H=72 | Mg=1 | O=5 | N=4 | Appearance = Green | Odor = Odorless | Density = 1.079 g/cm3[1] | MeltingPt = ~ | MeltingPtC = 152.3 | MeltingPt_ref = [1] decomposes[2] | Solubility = Insoluble | SolubleOther = Very soluble in ethanol, ether Soluble in ligroin,[1] acetone, benzene, chloroform[2] | Absorbance = See text |Section3={{Chembox Hazards | MainHazards = | FlashPt = | AutoignitionPt = }}Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light.[3] It also reflects green-yellow light, and as such contributes to the observed green color of most plants. This photosynthetic pigment is essential for photosynthesis in eukaryotes, cyanobacteria and prochlorophytes because of its role as primary electron donor in the electron transport chain.[4] Chlorophyll a also transfers resonance energy in the antenna complex, ending in the reaction center where specific chlorophylls P680 and P700 are located.[5] Distribution of chlorophyll aChlorophyll a is essential for most photosynthetic organisms to release chemical energy but is not the only pigment that can be used for photosynthesis. All oxygenic photosynthetic organisms use chlorophyll a, but differ in accessory pigments like chlorophylls b.[4] Chlorophyll z can also be found in very small quantities in the green sulfur bacteria, an anaerobic photoautotroph.[6] These organisms use bacteriochlorophyll and some chlorophyll a but do not produce oxygen.[6] Anoxygenic photosynthesis is the term applied to this process, unlike oxygenic photosynthesis where oxygen is produced during the light reactions of photosynthesis. Molecular structureThe molecular structure of chlorophyll a consists of a chlorin ring, whose four nitrogen atoms surround a central magnesium atom, and has several other attached side chains and a hydrocarbon tail. Chlorin ringChlorophyll a contains a magnesium ion encased in a large ring structure known as a chlorin. The chlorin ring is a heterocyclic compound derived from pyrrole. Four nitrogen atoms from the chlorin surround and bind the magnesium atom. The magnesium center uniquely defines the structure as a chlorophyll molecule.[7] The porphyrin ring of bacteriochlorophyll is saturated, and lacking alternation of double and single bonds causing variation in absorption of light.[8] Side chainsSide chains are attached to the chlorin ring of the various chlorophyll molecules. Different side chains characterize each type of chlorophyll molecule, and alters the absorption spectrum of light.[9][10] For instance, the only difference between chlorophyll a and chlorophyll b is that chlorophyll b has an aldehyde instead of a methyl group at the C-7 position.[10]Hydrocarbon tailChlorophyll a has a long hydrophobic tail, which anchors the molecule to other hydrophobic proteins in the thylakoid membrane of the chloroplast.[4] Once detached from the porphyrin ring, this long hydrocarbon tail becomes the precursor of two biomarkers, pristane and phytane, which are important in the study of geochemistry and the determination of petroleum sources. BiosynthesisChlorophyll a biosynthetic pathway utilizes a variety of enzymes.[11] Genes code for the enzymes on the Mg-tetrapyrroles of both bacteriochlorophyll a and chlorophyll a.[11] It begins with glutamic acid, which is transformed into a 5-aminolevulinic acid (ALA). Two molecules of ALA are then reduced to porphobilinogen (PBG), and four molecules of PBG are then coupled, forming protoporphyrin IX.[7] When forming protoporphyrin, Mg-chelatase acts as a catalyst for the insertion of Mg into the chlorophyll a structure.[11] The pathway then uses either a light-dependent process, driven by the enzyme protochlorophyllide oxidoreductase. Protochlorophyllide is a precursor to the production of a chlorophyll a molecule, or a light-independent process driven by other enzymes, to form a cyclic ring, and the reduction of another ring in the structure.[7] Attachment of the phytol tail completes the process of chlorophyll biosynthesis.[12] Reactions of photosynthesisAbsorbance of lightLight spectrumChlorophyll a absorbs light within the violet, blue and red wavelengths while mainly reflecting green. This reflectance gives chlorophyll its green appearance. Accessory photosynthetic pigments broaden the spectrum of light absorbed, increasing the range of wavelengths that can be used in photosynthesis.[4] The addition of chlorophyll b next to chlorophyll a extends the absorption spectrum. In low light conditions, plants produce a greater ratio of chlorophyll b to chlorophyll a molecules, increasing photosynthetic yield.[9] Light gatheringAbsorption of light by photosynthetic pigments converts photons into chemical energy. Light energy radiating onto the chloroplast strikes the pigments in the thylakoid membrane and excites their electrons. Since the chlorophyll a molecules only capture certain wavelengths, organisms may use accessory pigments to capture a wider range of light energy shown as the yellow circles.[5] It then transfers captured light from one pigment to the next as resonance energy, passing energy one pigment to the other until reaching the special chlorophyll a molecules in the reaction center.[9] These special chlorophyll a molecules are located in both photosystem II and photosystem I. They are known as P680 for Photosystem II and P700 for Photosystem I.[13] P680 and P700 are the primary electron donors to the electron transport chain. These two systems are different in their redox potentials for one-electron oxidation. The Em for P700 is approximately 500mV, while the Em for P680 is approximately 1,100-1,200 mV.[13] Primary electron donationChlorophyll a is very important in the energy phase of photosynthesis. Two electrons need to be passed to an electron acceptor for the process of photosynthesis to proceed.[4] Within the reaction centers of both photosystems there are a pair of chlorophyll a molecules that pass electrons on to the transport chain through redox reactions.[13] See also
References1. ^1 {{CRC90}} 2. ^1 2 {{cite web|last = Anatolievich|first = Kiper Ruslan|website = chemister.ru|url = http://chemister.ru/Database/properties-en.php?dbid=1&id=1870|title = Chlorophyll a|accessdate = 2014-08-23}} 3. ^{{cite web|url=http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookPS.html |title=Photosynthesis |deadurl=yes |archive-url=https://web.archive.org/web/20091128090227/http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookPS.html |archive-date=2009-11-28 }} 4. ^1 2 3 4 {{cite book |last1=Raven |first1=Peter H. |last2=Evert |first2=Ray F. |last3=Eichhorn |first3=Susan E. |chapter=Photosynthesis, Light, and Life |title=Biology of Plants |publisher=W. H. Freeman |year=2005 |pages=119–127 |edition=7th |isbn=0-7167-9811-5 }} 5. ^1 {{Cite journal| last1 = Papageorgiou |first1 = G. | author2 = Govindjee| title = Chlorophyll a Fluorescence, A Signature of Photosynthesis| volume= 19| publisher = Springer| year = 2004| page = 14, 48, 86| ref = harv| postscript = {{inconsistent citations}} }} 6. ^1 {{cite journal |last1=Eisen |first1=J. A. |last2=Nelson |first2=K. E. |last3=Paulsen |first3=I. T. |title=The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium |journal=Proceedings of the National Academy of Sciences |volume=99 |issue=14 |pages=9509–9514 |date=July 2002 |pmid=12093901 |pmc=123171 |doi=10.1073/pnas.132181499 |url=http://www.pnas.org/cgi/pmidlookup?view=long&pmid=12093901 |ref=harv |display-authors=etal}} 7. ^1 2 {{cite book |last1=Zeiger |first1=Eduardo |last2=Taiz |first2=Lincoln |chapter=Ch. 7: Topic 7.11: Chlorophyll Biosynthesis |chapterurl=http://4e.plantphys.net/article.php?ch=0&id=76 |title=Plant physiology |publisher=Sinauer Associates |location=Sunderland, MA |year=2006 |isbn=0-87893-856-7 |edition=4th |ref=harv}} 8. ^{{cite book |first1=Mary K. |last1=Campbell |first2=Shawn O. |last2=Farrell |title=Biochemistry |url=https://books.google.com/books?id=NYa45_BxgukC&pg=PA647 |date=20 November 2007 |publisher=Cengage Learning |isbn=978-0-495-39041-1 |pages=647 |edition=6th}} 9. ^1 2 {{Cite book|last1=Lange |first1=L. |last2=Nobel |first2=P. |last3=Osmond |first3=C. |last4=Ziegler |first4=H. | title = Physiological Plant Ecology I – Responses to the Physical Environment| volume=12A| publisher = Springer-Verlag| year = 1981| pages = 67, 259 }} 10. ^1 {{Cite journal|last1=Niedzwiedzki |first1=Dariusz M. |last2=Blankenship |first2=Robert E.| title = Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls| journal = Photosynthesis Research| volume = 106| issue = 3 | pages = 227–238| date = December 2010| doi = 10.1007/s11120-010-9598-9| pmid= 21086044| ref = harv }} 11. ^1 2 {{Cite journal| doi = 10.1146/annurev.genet.31.1.61|last1=Suzuki |first1=J. Y. |last2=Bollivar |first2=D. W. |last3=Bauer |first3=C. E. | title = Genetic Analysis of Chlorophyll biosynthesis.| journal = Annual Review of Genetics| volume = 31| issue = 1| pages = 61–89| year = 1997| url = ftp://166.111.30.161/pub/3.%C9%FA%CE%EF%CE%C4%CF%D7/Annual%20Review/Annual%20Review%20of%20Genetics-Palo%20Alto/1997/Genetic%20analysis%20of%20chlorophyll%20biosynthesis.pdf| ref = harv }} 12. ^{{harvnb|Zeiger|Taiz|2006|loc=Figure 7.11.A: The biosynthetic pathway of chlorophyll}} 13. ^1 2 {{cite journal |last1=Ishikita |first1=H. |last2=Saenger |first2=W. |last3=Biesiadka |first3=J. |last4=Loll |first4=B. |last5=Knapp |first5=E. W. |title=How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870 |journal=Proceedings of the National Academy of Sciences |volume=103 |issue=26 |pages=9855–9860 |date=June 2006 |pmid=16788069 |pmc=1502543 |doi=10.1073/pnas.0601446103 |url=http://www.pnas.org/cgi/pmidlookup?view=long&pmid=16788069 |ref=harv}} External links
2 : Tetrapyrroles|Photosynthetic pigments |
|||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。