请输入您要查询的百科知识:

 

词条 Cyclic number
释义

  1. Details

  2. Relation to repeating decimals

  3. Form of cyclic numbers

  4. Construction of cyclic numbers

  5. Properties of cyclic numbers

  6. Other numeric bases

  7. See also

  8. References

  9. Further reading

  10. External links

{{about|numbers where permutations of their digits (in some base) yield related numbers|the number theoretic concept|cyclic number (group theory)}}

A cyclic number is an integer in which cyclic permutations of the digits are successive multiples of the number. The most widely known is the six-digit number 142857, whose first six integer multiples are

142857 × 1 = 142857

142857 × 2 = 285714

142857 × 3 = 428571

142857 × 4 = 571428

142857 × 5 = 714285

142857 × 6 = 857142

Details

To qualify as a cyclic number, it is required that consecutive multiples be cyclic permutations. Thus, the number 076923 would not be considered a cyclic number, because even though all cyclic permutations are multiples, they are not consecutive integer multiples:

076923 × 1 = 076923

076923 × 3 = 230769

076923 × 4 = 307692

076923 × 9 = 692307

076923 × 10 = 769230

076923 × 12 = 923076

The following trivial cases are typically excluded:

  1. single digits, e.g.: 5
  2. repeated digits, e.g.: 555
  3. repeated cyclic numbers, e.g.: 142857142857

If leading zeros are not permitted on numerals, then 142857 is the only cyclic number in decimal, due to the necessary structure given in the next section. Allowing leading zeros, the sequence of cyclic numbers begins:

(106-1) / 7 = 142857 (6 digits)

(1016-1) / 17 = 0588235294117647 (16 digits)

(1018-1) / 19 = 052631578947368421 (18 digits)

(1022-1) / 23 = 0434782608695652173913 (22 digits)

(1028-1) / 29 = 0344827586206896551724137931 (28 digits)

(1046-1) / 47 = 0212765957446808510638297872340425531914893617 (46 digits)

(1058-1) / 59 = 0169491525423728813559322033898305084745762711864406779661 (58 digits)

(1060-1) / 61 = 016393442622950819672131147540983606557377049180327868852459 (60 digits)

(1096-1) / 97 = 010309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567 (96 digits)

Relation to repeating decimals

Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of

1/(L + 1).

Conversely, if the digital period of 1 /p (where p is prime) is

p − 1,

then the digits represent a cyclic number.

For example:

1/7 = 0.142857 142857….

Multiples of these fractions exhibit cyclic permutation:

1/7 = 0.142857 142857…

2/7 = 0.285714 285714…

3/7 = 0.428571 428571…

4/7 = 0.571428 571428…

5/7 = 0.714285 714285…

6/7 = 0.857142 857142….

Form of cyclic numbers

From the relation to unit fractions, it can be shown that cyclic numbers are of the form of the Fermat quotient

where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b).

For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.

Not all values of p will yield a cyclic number using this formula; for example, the case b = 10, p = 13 gives 076923076923, and the case b = 12, p = 19 gives 076B45076B45076B45. These failed cases will always contain a repetition of digits (possibly several).

The first values of p for which this formula produces cyclic numbers in decimal (b = 10) are {{OEIS|id=A001913}}

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983, …

For b = 12 (duodecimal), these ps are {{OEIS|id=A019340}}

5, 7, 17, 31, 41, 43, 53, 67, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 223, 257, 269, 281, 283, 293, 317, 353, 367, 379, 389, 401, 449, 461, 509, 523, 547, 557, 569, 571, 593, 607, 617, 619, 631, 641, 653, 691, 701, 739, 751, 761, 773, 787, 797, 809, 821, 857, 881, 929, 953, 967, 977, 991, ...

For b = 2 (binary), these ps are {{OEIS|id=A001122}}

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947, ...

For b = 3 (ternary), these ps are {{OEIS|id=A019334}}

2, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257, 269, 281, 283, 293, 317, 331, 353, 379, 389, 401, 449, 461, 463, 487, 509, 521, 557, 569, 571, 593, 607, 617, 631, 641, 653, 677, 691, 701, 739, 751, 773, 797, 809, 811, 821, 823, 857, 859, 881, 907, 929, 941, 953, 977, ...

There are no such ps in the hexadecimal system.

The known pattern to this sequence comes from algebraic number theory, specifically, this sequence is the set of primes p such that b is a primitive root modulo p. A conjecture of Emil Artin [1] is that this sequence contains 37.395..% of the primes (for b in {{oeis|id=A085397}}).

Construction of cyclic numbers

Cyclic numbers can be constructed by the following procedure:

Let b be the number base (10 for decimal)

Let p be a prime that does not divide b.

Let t = 0.

Let r = 1.

Let n = 0.

loop:

Let t = t + 1

Let x = r · b

Let d = int(x / p)

Let r = x mod p

Let n = n · b + d

If r ≠ 1 then repeat the loop.

if t = p − 1 then n is a cyclic number.

This procedure works by computing the digits of 1 /p in base b, by long division. r is the remainder at each step, and d is the digit produced.

The step

n = n · b + d

serves simply to collect the digits. For computers not capable of expressing very large integers, the digits may be output or collected in another way.

Note that if t ever exceeds p/2, then the number must be cyclic, without the need to compute the remaining digits.

Properties of cyclic numbers

  • When multiplied by their generating prime, results in a sequence of {{'}}base−1' digits (9 in decimal). Decimal 142857 × 7 = 999999.
  • When split in two,three four etc...regarding base 10, 100, 1000 etc.. by its digits and added the result is a sequence of 9's. 14 + 28 + 57 = 99, 142 + 857 = 999, 1428 + 5714+ 2857 = 9999 etc. ... (This is a special case of Midy's Theorem.)
  • All cyclic numbers are divisible by {{'}}base−1' (9 in decimal) and the sum of the remainder is the a multiple of the divisor. (This follows from the previous point.)

Other numeric bases

Using the above technique, cyclic numbers can be found in other numeric bases. (Note that not all of these follow the second rule (all successive multiples being cyclic permutations) listed in the Special Cases section above) In each of these cases, the digits across half the period add up to the base minus one. Thus for binary, the sum of the bits across half the period is 1; for ternary, it is 2, and so on.

In binary, the sequence of cyclic numbers begins: {{OEIS|id=A001122}}

11 (3) → 01

101 (5) → 0011

1011 (11) → 0001011101

1101 (13) → 000100111011

10011 (19) → 000011010111100101

11101 (29) → 0000100011010011110111001011

100101 (37) → 00000110101011100101111100101010001101

110101 (53) → 00000100101101001111001001101101111101101001011000011011001001

In ternary: {{OEIS|id=A019334}}

2 (2) → 1

12 (5) → 0121

21 (7) → 010212

122 (17) → 0011202122110201

201 (19) → 001102100221120122

In quaternary:

(none)

In quinary: {{OEIS|id=A019335}}

2 (2) → 2

3 (3) → 13

12 (7) → 032412

32 (17) → 0121340243231042

43 (23) → 0102041332143424031123

122 (37) → 003142122040113342441302322404331102

133 (43) → 002423141223434043111442021303221010401333

In senary: {{OEIS|id=A167794}}

15 (11) → 0313452421

21 (13) → 024340531215

25 (17) → 0204122453514331

105 (41) → 0051335412440330234455042201431152253211

135 (59) → 0033544402235104134324250301455220111533204514212313052541

141 (61) → 003312504044154453014342320220552243051511401102541213235335

211 (79) → 002422325434441304033512354102140052450553133230121114251522043201453415503105

In base 7: {{OEIS|id=A019337}}

2 (2) → 3

5 (5) → 1254

14 (11) → 0431162355

16 (13) → 035245631421

23 (17) → 0261143464055232

32 (23) → 0206251134364604155323

56 (41) → 0112363262135202250565543034045314644161

In octal: {{OEIS|id=A019338}}

3 (3) → 25

5 (5) → 1463

13 (11) → 0564272135

35 (29) → 0215173454106475626043236713

65 (53) → 0115220717545336140465103476625570602324416373126743

73 (59) → 0105330745756511606404255436276724470320212661713735223415

123 (83) → 0061262710366576352321570224030531344173277165150674112014254562075537472464336045

In nonary:

2 (2) → 4

(no others)

In base 11: {{OEIS|id=A019339}}

2 (2) → 5

3 (3) → 37

12 (13) → 093425A17685

16 (17) → 07132651A3978459

21 (23) → 05296243390A581486771A

27 (29) → 04199534608387A69115764A2723

29 (31) → 039A32146818574A71078964292536

In duodecimal: {{OEIS|id=A019340}}

5 (5) → 2497

7 (7) → 186A35

15 (17) → 08579214B36429A7

27 (31) → 0478AA093598166B74311B28623A55

35 (41) → 036190A653277397A9B4B85A2B15689448241207

37 (43) → 0342295A3AA730A068456B879926181148B1B53765

45 (53) → 02872B3A23205525A784640AA4B9349081989B6696143757B117

In base 13: {{OEIS|id=A019341}}

2 (2) → 6

5 (5) → 27A5

B (11) → 12495BA837

16 (19) → 08B82976AC414A3562

25 (31) → 055B42692C21347C7718A63A0AB985

2B (37) → 0474BC3B3215368A25C85810919AB79642A7

32 (41) → 04177C08322B13645926C8B550C49AA1B96873A6

In base 14: {{OEIS|id=A019342}}

3 (3) → 49

13 (17) → 0B75A9C4D2683419

15 (19) → 0A45C7522D398168BB

19 (23) → 0874391B7CAD569A4C2613

21 (29) → 06A89925B163C0D73544B82C7A1D

3B (53) → 039AB8A075793610B146C21828DA43253D6864A7CD2C971BC5B5

43 (59) → 03471937B8ACB5659A2BC15D09D74DA96C4A62531287843B21C80D4069

In base 15: {{OEIS|id=A019343}}

2 (2) → 7

D (13) → 124936DCA5B8

14 (19) → 0BC9718A3E3257D64B

18 (23) → 09BB1487291E533DA67C5D

1E (29) → 07B5A528BD6ACDE73949C6318421

27 (37) → 061339AE2C87A8194CE8DBB540C26746D5A2

2B (41) → 0574B51C68BA922DD80AE97A39D286345CC116E4

In hexadecimal:

(none)

In base 17: {{OEIS|id=A019344}}

2 (2) → 8

3 (3) → 5B

5 (5) → 36DA

7 (7) → 274E9C

B (11) → 194ADF7C63

16 (23) → 0C9A5F8ED52G476B1823BE

1E (31) → 09583E469EDC11AG7B8D2CA7234FF6

In base 18: {{OEIS|id=A019345}}

5 (5) → 3AE7

B (11) → 1B834H69ED

1B (29) → 0B31F95A9GDAE4H6EG28C781463D

21 (37) → 08DB37565F184FA3G0H946EACBC2G9D27E1H

27 (43) → 079B57H2GD721C293DEBCHA86CA0F14AFG5F8E4365

2H (53) → 0620C41682CG57EAFB3D4788EGHBFH5DGB9F51CA3726E4DA9931

35 (59) → 058F4A6CEBAC3BG30G89DD227GE0AHC92D7B53675E61EH19844FFA13H7

In base 19: {{OEIS|id=A019346}}

2 (2) → 9

7 (7) → 2DAG58

B (11) → 1DFA6H538C

D (13) → 18EBD2HA475G

14 (23) → 0FD4291C784I35EG9H6BAE

1A (29) → 0C89FDE7G73HD1I6A9354B2BF15H

1I (37) → 09E73B5C631A52AEGHI94BF7D6CFH8DG8421

In base 20: {{OEIS|id=A019347}}

3 (3) → 6D

D (13) → 1AF7DGI94C63

H (17) → 13ABF5HCIG984E27

13 (23) → 0H7GA8DI546J2C39B61EFD

1H (37) → 0AG469EBHGF2E11C8CJ93FDA58234H5II7B7

23 (43) → 0960IC1H43E878GEHD9F6JADJ17I2FG5BCB3526A4D

27 (47) → 08A4522B15ACF67D3GBI5J2JB9FEHH8IE974DC6G381E0H

In base 21: {{OEIS|id=A019348}}

2 (2) → A

J (19) → 1248HE7F9JIGC36D5B

12 (23) → 0J3DECG92FAK1H7684BI5A

18 (29) → 0F475198EA2IH7K5GDFJBC6AI23D

1A (31) → 0E4FC4179A382EIK6G58GJDBAHCI62

2B (53) → 086F9AEDI4FHH927J8F13K47B1KCE5BA672G533BID1C5JH0GD9J

38 (71) → 06493BB50C8I721A13HFE42K27EA785J4F7KEGBH99FK8C2DIJAJH356GI0ID6ADCF1G5D

In base 22: {{OEIS|id=A019349}}

5 (5) → 48HD

H (17) → 16A7GI2CKFBE53J9

J (19) → 13A95H826KIBCG4DJF

19 (31) → 0FDAE45EJJ3C194L68B7HG722I9KCH

1F (37) → 0D1H57G143CAFA2872L8K4GE5KHI9B6BJDEJ

1J (41) → 0BHFC7B5JIH3GDKK8CJ6LA469EAG234I5811D92F

23 (47) → 0A6C3G897L18JEB5361J44ELBF9I5DCE0KD27AGIFK2HH7

In base 23: {{OEIS|id=A019350}}

2 (2) → B

3 (3) → 7F

5 (5) → 4DI9

H (17) → 182G59AILEK6HDC4

21 (47) → 0B5K1AHE496JD4KCGEFF3L0MBH2LC58IDG39I2A6877J1M

2D (59) → 08M51CJK65AC1LJ27I79846E9H3BFME0HLA32GHCAL13KF4FDEIG8D5JB7

3K (89) → 05LG6ADG0BK9CL4910HJ2J8I21CF5FHD4327B8C3864EMH16GC96MB2DA1IDLM53K3E4KLA7H759IJKFBEAJEGI8

In base 24: {{OEIS|id=A019351}}

7 (7) → 3A6KDH

B (11) → 248HALJF6D

D (13) → 1L795CM3GEIB

H (17) → 19L45FCGME2JI8B7

17 (31) → 0IDMAK327HJ8C96N5A1D3KLG64FBEH

1D (37) → 0FDEM1735K2E6BG54CN8A91MGKI3L9HC7IJB

1H (41) → 0E14284G98IHDB2M5KBGN9MJLFJ7EF56ACL1I3C7

In base 25:

2 (2) → C

(no others)

Note that in ternary (b = 3), the case p = 2 yields 1 as a cyclic number. While single digits may be considered trivial cases, it may be useful for completeness of the theory to consider them only when they are generated in this way.

It can be shown that no cyclic numbers (other than trivial single digits, i.e. p = 2) exist in any numeric base which is a perfect square, that is, base 4, 9, 16, 25, etc.

See also

  • Repeating decimal
  • Fermat's little theorem
  • Cyclic permutation of integer
  • Parasitic number

References

1. ^http://mathworld.wolfram.com/ArtinsConstant.html

Further reading

  • Gardner, Martin. Mathematical Circus: More Puzzles, Games, Paradoxes and Other Mathematical Entertainments From Scientific American. New York: The Mathematical Association of America, 1979. pp. 111–122.
  • Kalman, Dan; 'Fractions with Cycling Digit Patterns' The College Mathematics Journal, Vol. 27, No. 2. (Mar., 1996), pp. 109–115.
  • Leslie, John. "The Philosophy of Arithmetic: Exhibiting a Progressive View of the Theory and Practice of ....", Longman, Hurst, Rees, Orme, and Brown, 1820, {{ISBN|1-4020-1546-1}}
  • Wells, David; "The Penguin Dictionary of Curious and Interesting Numbers", Penguin Press. {{ISBN|0-14-008029-5}}

External links

  • {{MathWorld | urlname=CyclicNumber | title=Cyclic Number}}
  • [https://www.youtube.com/watch?v=WUlaUalgxqI Youtube: "Cyclic Numbers - Numberphile"]
{{Classes of natural numbers}}

2 : Number theory|Permutations

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 20:14:09