请输入您要查询的百科知识:

 

词条 Acetylacetone
释义

  1. Properties

      Tautomerism    Acid–base properties  

  2. Preparation

  3. Reactions

     Condensations  Coordination chemistry 

  4. Biodegradation

  5. References

  6. External links

{{redirect|Acac|other uses|ACAC (disambiguation)}}{{chembox
| Watchedfields = changed
| verifiedrevid = 477240155
| ImageFile = Acetyloaceton.svg
| ImageSize = 150px
| ImageName = Skeletal structures of both tautomers
| ImageFileL1 = Acetylacetone-enol-3D-balls.png
| ImageNameL1 = Ball-and-stick model of the enol tautomer
| ImageFileR1 = Acetylacetone-keto-3D-balls.png
| ImageNameR1 = Ball-and-stick model of the keto tautomer
| PIN = Pentane-2,4-dione
| OtherNames={{bulleted list | Hacac | 2,4-pentanedione}}
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 29001
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C15499
| InChI = 1/C5H8O2/c1-4(6)3-5(2)7/h3H2,1-2H3
| InChIKey = YRKCREAYFQTBPV-UHFFFAOYAO
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 191625
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C5H8O2/c1-4(6)3-5(2)7/h3H2,1-2H3
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = YRKCREAYFQTBPV-UHFFFAOYSA-N
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo=123-54-6
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 46R950BP4J
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 14750
| PubChem = 31261
| RTECS = SA1925000
| UNNumber = 2310
| Beilstein = 741937
| Gmelin = 2537
| EINECS = 204-634-0
| SMILES = O=C(C)CC(=O)C
| SMILES1 = CC(=O)CC(=O)C
| SMILES2 = CC(O)=CC(=O)C
| SMILES2_Comment = Enol form
| Section4 = {{Chembox Properties
| C=5 | H=8 | O=2
| Density = 0.975 g/mL[1]
| MeltingPtC = −23
| BoilingPtC = 140
| Solubility = 16 g/100 mL
| Solvent = Water
| MagSus = -54.88·10−6 cm3/mol
| Section5 = {{Chembox Hazards
| NFPA-H = 2
| NFPA-F = 2
| NFPA-R = 0
| GHSPictograms = {{GHS02}}{{GHS06}}{{GHS07}}{{GHS08}}
| GHSSignalWord = Danger
| HPhrases = {{H-phrases|226|302|311|320|331|335|341|370|402|412}}
| PPhrases = {{P-phrases|201|202|210|233|240|241|242|243|260|261|264|270|271|273|280|281|301+312|302+352|303+361+353|304+340|305+351+338|307+311|308+313|311|312|321|322|330|337+313|361|363|370+378|403+233|403+235|405|501}}
| FlashPtC = 34
| AutoignitionPtC = 340
| ExploLimits = 2.4–11.6%
}}

Acetylacetone is an organic compound with the formula CH3COCH2COCH3. It is a colorless liquid, classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3C(O)CH=C(OH)CH3. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications.[2] It is a colorless liquid that is a precursor to acetylacetonate anion (commonly abbreviated acac), a bidentate ligand. It is also a building block for the synthesis of heterocyclic compounds.

Properties

Tautomerism

The keto and enol tautomers of acetylacetone coexist in solution. The enol form has C2v symmetry, meaning the hydrogen atom is shared equally between the two oxygen atoms.[3] In the gas phase, the equilibrium constant, Kketo→enol, is 11.7, favoring the enol form. The two tautomeric forms can be distinguished by NMR spectroscopy, IR spectroscopy and other methods.[4][5]

Solvent Kketo→enol
Gas phase 11.7
Cyclohexane 42
Toluene 10
THF 7.2
DMSO 2
Water 0.23

The equilibrium constant tends to be high in nonpolar solvents; the keto form becomes more favorable in polar, hydrogen-bonding solvents, such as water.[6] The enol form is a vinylogous analogue of a carboxylic acid.{{clear|left}}

Acid–base properties

solventT/°CpKa[7]
40% ethanol/water30 9.8
70% dioxane/water 2812.5
80% DMSO/water25 10.16
DMSO 2513.41

Acetylacetone is a weak acid:

C5H8O2 {{eqm}} {{chem|C|5|H|7|O|2|−}} + H+

IUPAC recommended pKa values for this equilibrium in aqueous solution at 25 °C are 8.99 ± 0.04 (I = 0), 8.83 ± 0.02 (I = 0.1 M NaClO4) and 9.00 ± 0.03 (I = 1.0 M NaClO4; I = Ionic strength).[8] Values for mixed solvents are available. Very strong bases, such as organolithium compounds, will deprotonate acetylacetone twice. The resulting dilithio species can then be alkylated at C-1.{{clear|left}}

Preparation

Acetylacetone is prepared industrially by the thermal rearrangement of isopropenyl acetate.[9]

CH2(CH3)COC(O)Me → MeC(O)CH2C(O)Me

Laboratory routes to acetylacetone begin also with acetone. Acetone and acetic anhydride upon the addition of boron trifluoride (BF3) catalyst:[10]

(CH3CO)2O + CH3C(O)CH3 → CH3C(O)CH2C(O)CH3

A second synthesis involves the base-catalyzed condensation of acetone and ethyl acetate, followed by acidification:[10]

NaOEt + EtO2CCH3 + CH3C(O)CH3 → NaCH3C(O)CHC(O)CH3 + 2 EtOH

NaCH3C(O)CHC(O)CH3 + HCl → CH3C(O)CH2C(O)CH3 + NaCl

Because of the ease of these syntheses, many analogues of acetylacetonates are known. Some examples include C6H5C(O)CH2C(O)C6H5 (dbaH) and (CH3)3CC(O)CH2C(O)CC(CH3)3. Hexafluoroacetylacetonate is also widely used to generate volatile metal complexes.

Reactions

Condensations

Acetylacetone is a versatile bifunctional precursor to heterocycles because both keto groups undergo condensation. Hydrazine reacts to produce pyrazoles. Urea gives pyrimidines. Condensation with two aryl- and alkylamines to gives NacNacs, wherein the oxygen atoms in acetylacetone are replaced by NR (R = aryl, alkyl).

Coordination chemistry

{{main article|Metal acetylacetonates}}

The acetylacetonate anion, acac, forms complexes with many transition metal ions. A general method of synthesis is to treat a metal salt with acetylacetone in the presence of a base:[11]

MBz + z Hacac {{eqm}} M(acac)z + z BH

Both oxygen atoms bind to the metal to form a six-membered chelate ring. In some cases the chelate effect is so strong that no added base is needed to form the complex.

Biodegradation

Enzymatic breakdown: The enzyme acetylacetone dioxygenase cleaves the carbon-carbon bond of acetylacetone, producing acetate and 2-oxopropanal. The enzyme is iron(II)-dependent, but it has been proven to bind to zinc as well. Acetylacetone degradation has been characterized in the bacterium Acinetobacter johnsonii.[12]

C5H8O2 + O2 → C2H4O2 + C3H4O2

References

1. ^{{cite web|url=http://www.sigmaaldrich.com/catalog/product/sial/05581?lang=en®ion=GB|website=Sigma-Aldrich|title=05581: Acetylacetone}}
2. ^{{cite encyclopedia|title=2,4‐Pentanedione|encyclopedia= e-EROS Encyclopedia of Reagents for Organic Synthesis|author=Thomas M. Harris|doi=10.1002/047084289X.rp030|year=2001|}}
3. ^{{cite journal|title=The C2v Structure of Enolic Acetylacetone|first1=W.|last1=Caminati|first2=J.-U.|last2=Grabow|year=2006|journal=J. Am. Chem. Soc.|volume=128|issue=3|pages=854–857|doi=10.1021/ja055333g|pmid=16417375}}
4. ^{{cite journal|title=Substituent Effects on Keto–Enol Equilibria Using NMR Spectroscopy|first1=Kimberly A.|last1=Manbeck|first2=Nicholas C.|last2=Boaz|first3=Nathaniel C.|last3=Bair|first4=Allix M. S.|last4=Sanders|first5=Anderson L.|last5=Marsh|year=2011|journal=J. Chem. Educ.|volume=88|issue=10|pages=1444–1445|doi=10.1021/ed1010932}}
5. ^{{cite journal|title=Intramolecular hydrogen bond in enol form of 3-substituted-2,4-pentanedione|journal=Tetrahedron|year=1970|volume=26|pages=5691–5697|doi=10.1016/0040-4020(70)80005-9|first1=Z.|last1=Yoshida|first2=H.|last2=Ogoshi|first3=T.|last3=Tokumitsu}}
6. ^{{cite book|title=Solvents and Solvent Effects in Organic Chemistry|first=Christian|last=Reichardt|publisher=Wiley-VCH|edition= 3rd|date= 2003|ISBN=3-527-30618-8}}
7. ^IUPAC SC-Database A comprehensive database of published data on equilibrium constants of metal complexes and ligands
8. ^{{cite journal|last=Stary|first=J.|last2=Liljenzin|first2= J. O.|year=1982|title=Critical evaluation of equilibrium constants involving acetylacetone and its metal chelates|volume=54|issue=12|pages=2557–2592| doi=10.1351/pac198254122557| url=http://www.iupac.org/publications/pac/pdf/1982/pdf/5412x2557.pdf|journal=Pure and Applied Chemistry}}
9. ^{{cite encyclopedia|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry|location=Weinheim |publisher=Wiley-VCH |first=Hardo|last=Siegel|first2=Manfred|last2=Eggersdorfer|title=Ketones|doi=10.1002/14356007.a15_077|date=2002}}
10. ^{{OrgSynth | title = Acetylacetone | author = C. E. Denoon, Jr. | collvol = 3 | collvolpages = 16 | prep = cv3p0016}}
11. ^{{cite web|url=http://homepages.gac.edu/~bobrien/Inorganic_Lab/acac/Co.tfa.3.&.Co.acac.3.handout.S01.pdf|title=Co(tfa)3 & Co(acac)3 handout|first=Brian|last= O'Brien|publisher= Gustavus Adolphus College}}
12. ^{{cite journal|last1=Straganz|first1=G.D.|last2=Glieder|first2=A.|last3=Brecker|first3=L.|last4=Ribbons|first4=D.W.|last5=Steiner|first5=W.|year=2003|title=Acetylacetone-cleaving enzyme Dke1: a novel C–C-bond-cleaving enzyme from Acinetobacter johnsonii|url=|journal=Biochem. J.|pmid=12379146|volume=369|issue=3|pmc=1223103|pages=573–581|doi=10.1042/BJ20021047}}

External links

  • {{ICSC|0533|05}}

3 : Diketones|Chelating agents|Ligands

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 11:57:25