请输入您要查询的百科知识:

 

词条 Equol
释义

  1. History

  2. Chemical structure

  3. Production in humans

  4. Medical use

     (S)-equol producing bacteria 

  5. Pharmacology

     Estrogen receptor binding  Pharmacokinetics 

  6. See also

  7. References

{{medical citations needed|date=July 2012}}{{chembox
| Watchedfields = changed
| verifiedrevid = 414459058
| ImageFile=Equol structure.png
| ImageSize=200px
| IUPACName=(3S)-3-(4-Hydroxyphenyl)-7-chromanol
| OtherNames=4',7-Isoflavandiol
|Section1={{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 82594
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C14131
| InChI = 1/C15H14O3/c16-13-4-1-10(2-5-13)12-7-11-3-6-14(17)8-15(11)18-9-12/h1-6,8,12,16-17H,7,9H2/t12-/m1/s1
| InChIKey = ADFCQWZHKCXPAJ-GFCCVEGCBP
| SMILES1 = Oc1ccc(cc1)[C@@H]2Cc3c(OC2)cc(O)cc3
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 198877
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C15H14O3/c16-13-4-1-10(2-5-13)12-7-11-3-6-14(17)8-15(11)18-9-12/h1-6,8,12,16-17H,7,9H2/t12-/m1/s1
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = ADFCQWZHKCXPAJ-GFCCVEGCSA-N
| CASNo_Ref = {{cascite|correct|??}}
| CASNo=531-95-3
| PubChem=91469
| SMILES=C1C(COC2=C1C=CC(=C2)O)C3=CC=C(C=C3)O
|Section2={{Chembox Properties
| C=15|H=14|O=3
| Appearance=
| Density=
| MeltingPt=
| BoilingPt=
| Solubility=
|Section3={{Chembox Hazards
| MainHazards=
| FlashPt=
| AutoignitionPt =
}}Equol (4',7-isoflavandiol) is an isoflavandiol[1] estrogen metabolized from daidzein, a type of isoflavone found in soybeans and other plant sources, by bacterial flora in the intestines.[2][3] While endogenous estrogenic hormones such as estradiol are steroids, equol is a nonsteroidal estrogen. However, only about 30-50% of people have intestinal bacteria that make equol.[4] Equol can exist in two enantiomeric forms, (S)-equol and (R)-equol.[5] (S)-Equol preferentially binds estrogen receptor beta.[2][6]

History

(S)-Equol was first isolated from horse urine in 1932,[7] and the name was suggested by this equine connection.[8] Since then, equol has been found in the urine or plasma of many other animal species, although these animals have significant differences in their effectiveness in metabolizing the soy isoflavone daidzein into equol.[8] In 1980, scientists reporting the discovery of equol in humans.[9] The ability of (S)-equol to play a role in the treatment of estrogen- or androgen-mediated diseases or disorders was first proposed in 1984.[10]

Chemical structure

Equol is a compound that can exist in two mirror image forms known as the enantiomers, (S)-equol and (R)-equol. However, only (S)-equol is produced in humans and animals with the ability to produce equol after soy isoflavone consumption. (S)-Equol is not of plant origin. It is a metabolite of the soy isoflavone daidzein. (S)-equol thus is characterized as an isoflavan.[8] In contrast, R-equol is not made in humans, but can be chemically synthesized, such as in the laboratory.[11] The molecular and physical structure of (S)-equol is similar to that of the hormone estradiol.[12]

Production in humans

Not all humans can produce (S)-equol after soy consumption.[10] The ability to do so depends on having certain strains of bacteria living within the intestine. Twenty-one different strains of intestinal bacteria cultured from humans have the ability to transform daidzein into (S)-equol or a related intermediate compound.[8] Several studies indicate that only 25 to 30 percent of the adult population of Western countries produces (S)-equol after eating soy foods containing isoflavones,[12][13][14][15] significantly lower than the reported 50 to 60 percent frequency of equol-producers in adults from Japan, Korea, or China.[16][17][18][19] Vegetarians are more capable of transforming daidzein in this substance too.[20] In research studies, the ability of a person to produce (S)-equol is determined with a standardized test in which the person, who has not had antibiotics for at least a month prior to testing, drinks two 240 milliliter glasses of soy milk or eats a soy food equivalent for three days followed by measurement of (S)-equol concentrations in their urine on the test's fourth day.[21] Seaweed and dairy consumption enhances the production of equol.[12][22]

Medical use

Under the code name AUS-131, (S)-equol is under development for the treatment of menopausal symptoms such as hot flashes and benign prostatic hyperplasia.[23][24] 

(S)-equol producing bacteria

While many more bacteria are involved in the related intermediate process of (S)-equol production, such as conversion of daidzin to daidzein, or genistein to 5-Hydroxy-equol, the bacteria that can produce a complete conversion of daidzein to (S)-equol,[25] are the following:[26]

  • Adlercreutzia equolifaciens
  • Asaccharobacter celatus AHU1763
  • Bacteroides ovatus
  • Bifidobacterium
  • Bifidobacterium animalis
  • Coriobacteriaceae sp MT1B9
  • Eggerthella sp YY7918
  • Enterococcus faecium
  • Eubacterium sp D1 and D2
  • Finegoldia magna
  • Lactobacillus mucosae
  • Lactobacillus sp Niu-O16
  • Lactococcus garvieae (Lc 20-92)
  • Ruminococcus productus
  • Slackia sp HE8
  • Slackia equolifaciens (Strain DZE)
  • Streptococcus intermedius
  • Veillonella sp

However, the Bifidobacterium conversion has only been claimed once by Tsangalis et al. 2002, and not reproduced since.[https://books.google.com/books?id=zaJ6teJ1KiYC&pg=PA105] Mixed cultures such as Lactobacillus sp. Niu-O16 and Eggerthella sp. Julong 732 can also produce (S)-equol.[https://books.google.com/books?id=zaJ6teJ1KiYC&pg=PA104] Some equol producing bacteria, as implied by their nomenclature, are Adlercreutzia equolifaciens, Slackia equolifaciens and Slackia isoflavoniconvertens.

Pharmacology

Estrogen receptor binding

(S)-equol is a nonsteroidal, selective agonist of ERβ (Ki = 16 nM), with 13-fold selectivity for ERβ over ERα.[3] Relative to (S)-equol, (R)-equol is less potent and, in contrast, binds to ERα (Ki = 50 nM) with 3.5-fold selectivity over ERβ.[3] (S)-Equol has about 2% of the affinity for the human estrogen receptor alpha (ERα) estrogen compared to estradiol. (S)-Equol has a stronger affinity for the human estrogen receptor beta (ERβ), yet this affinity is still just 20% that of estradiol. The preferential binding of (S)-equol to ERβ, compared to ERα and to that of estradiol, indicates the molecule may share some of the characteristics of a selective estrogen receptor modulator (SERM).[27]

Pharmacokinetics

(S)-Equol is a very stable molecule that essentially remains unchanged when digested, and this lack of further metabolism explains its very quick absorption and high bioavailability.[28]

When (S)-equol is consumed, it is rapidly absorbed and achieves a Tmax (rate of peak plasma concentration) in two to three hours. In comparison, the Tmax of the daidzein is 4 to 10 hours because it occurs in a glycoside (with a glucose (sugar) side chain) form and the body must, in order to use daidzein, convert daidzein to its aglycone form (without the glucose side chain), achieved through removal of the sugar during digestion. If consumed directly in aglycone form, daidzein has a Tmax of one to three hours.[29]

Also, the percent fractional elimination of (S)-equol in urine after oral administration is extremely high and, in some adults, can be close to 100 percent, which is far higher than the percent fractional eliminations of either daidzein (30 to 40 percent) or genistein (7 to 15 percent).[30]

Equol has been found to act as an agonist of the GPER (GPR30).[31]

See also

  • Daidzein
  • Estrogen receptor
  • Genistein
  • Liquiritigenin
  • Menerba
  • Prinaberel
  • WAY-200070
  • Diarylpropionitrile

References

1. ^The structures of 7,4’-dihydroxy-isoflavan and its precursors is shown in Structural Elucidation of Hydroxylated Metabolites of the Isoflavan Equol by GC/MS and HPLC/MS by Corinna E. Rüfer, Hansruedi Glatt, and Sabine E. Kulling in Drug Metabolism and Disposition (2005, electronic publication).
2. ^{{cite journal |vauthors=Wang XL, Hur HG, Lee JH, Kim KT, Kim SI |title=Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium |journal=Appl. Environ. Microbiol. |volume=71 |issue=1 |pages=214–9 |date=January 2005 |pmid=15640190 |pmc=544246 |doi=10.1128/AEM.71.1.214-219.2005 }}
3. ^{{cite journal|last1=Muthyala|first1=Rajeev S|last2=Ju|first2=Young H|last3=Sheng|first3=Shubin|last4=Williams|first4=Lee D|last5=Doerge|first5=Daniel R|last6=Katzenellenbogen|first6=Benita S|last7=Helferich|first7=William G|last8=Katzenellenbogen|first8=John A|title=Equol, a natural estrogenic metabolite from soy isoflavones|journal=Bioorganic & Medicinal Chemistry|volume=12|issue=6|year=2004|pages=1559–1567|issn=0968-0896|doi=10.1016/j.bmc.2003.11.035|pmid=15018930}}
4. ^{{cite journal |vauthors=Frankenfeld CL, Atkinson C, Thomas WK |title=High concordance of daidzein-metabolizing phenotypes in individuals measured 1 to 3 years apart |journal=Br. J. Nutr. |volume=94 |issue=6 |pages=873–6 |date=December 2005 |pmid=16351761 |url=http://journals.cambridge.org/abstract_S0007114505002618 |doi=10.1079/bjn20051565|display-authors=etal}}
5. ^{{cite journal|last=Setchell|first=Kenneth D. R. |author2=Carlo Clerici|title=Equol: history, chemistry, and formation|journal=J Nutr|date=June 2, 2010|volume=140|issue=7|pages=1355S–62S |doi=10.3945/jn.109.119776 |pmid=20519412 |url=http://jn.nutrition.org/content/140/7/1355S.long|accessdate=13 December 2011|pmc=2884333}}
6. ^{{cite journal |vauthors=Mueller SO, Simon S, Chae K, Metzler M, Korach KS |title=Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor {α} (ER{α}) and ERβ in human cells |journal=Toxicol. Sci. |volume=80 |issue=1 |pages=14–25 |year=April 2004 |pmid=15084758 |doi=10.1093/toxsci/kfh147 |url=http://toxsci.oxfordjournals.org/cgi/content/full/80/1/14}}
7. ^{{cite journal|last=Marrian|first=GF|author2=Haslewood, GA |title=Equol, a new inactive phenol isolated from the ketohydroxyoestrin fraction of mares' urine |journal=The Biochemical Journal|year=1932|volume=26|issue=4|pages=1227–32|pmid=16744928|pmc=1261026|doi=10.1042/bj0261227}}
8. ^{{cite journal|last=Setchell|first=KD|author2=Clerici, C |title=Equol: history, chemistry, and formation |journal=The Journal of Nutrition|date=July 2010|volume=140|issue=7|pages=1355S–62S|pmid=20519412|doi=10.3945/jn.109.119776|pmc=2884333}}
9. ^{{cite journal|last=Axelson|first=M |author2=Kirk, DN |author3=Farrant, RD |author4=Cooley, G |author5=Lawson, AM |author6=Setchell, KD|title=The identification of the weak oestrogen equol [7-hydroxy-3-(4'-hydroxyphenyl)chroman] in human urine |journal=The Biochemical Journal|date=1982-02-01|volume=201|issue=2|pages=353–7|pmid=7082293|pmc=1163650 |doi=10.1042/bj2010353}}
10. ^{{cite journal|last=Setchell|first=KD |author2=Borriello, SP |author3=Hulme, P |author4=Kirk, DN |author5=Axelson, M|title=Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease |journal=The American Journal of Clinical Nutrition|date=September 1984|volume=40|issue=3|pages=569–78|pmid=6383008|doi=10.1093/ajcn/40.3.569 }}
11. ^{{cite journal|last=Setchell|first=KD |author2=Brown, NM |author3=Lydeking-Olsen, E|title=The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones |journal=The Journal of Nutrition|date=December 2002|volume=132|issue=12|pages=3577–84|pmid=12468591|doi=10.1093/jn/132.12.3577 }}
12. ^{{cite journal|last=Atkinson|first=C |author2=Frankenfeld, CL |author3=Lampe, JW|title=Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health |journal=Experimental Biology and Medicine (Maywood, N.J.)|date=March 2005|volume=230|issue=3|pages=155–70|pmid=15734719|doi=10.1177/153537020523000302 }}
13. ^{{cite journal|last=Lampe|first=JW |author2=Karr, SC |author3=Hutchins, AM |author4=Slavin, JL|title=Urinary equol excretion with a soy challenge: influence of habitual diet |journal=Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine|date=March 1998|volume=217|issue=3|pages=335–9|pmid=9492344|doi=10.3181/00379727-217-44241}}
14. ^{{cite journal|last=Setchell|first=KD|author2=Cole, SJ |title=Method of defining equol-producer status and its frequency among vegetarians|journal=The Journal of Nutrition|date=August 2006|volume=136|issue=8|pages=2188–93|pmid=16857839|doi=10.1093/jn/136.8.2188}}
15. ^{{cite journal|last=Rowland|first=IR|author2=Wiseman, H |author3=Sanders, TA |author4=Adlercreutz, H |author5=Bowey, EA |title=Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora |journal=Nutrition and Cancer|year=2000|volume=36|issue=1|pages=27–32|pmid=10798213|doi=10.1207/S15327914NC3601_5}}
16. ^{{cite journal|last=Watanabe|first=S|author2=Yamaguchi, M |author3=Sobue, T |author4=Takahashi, T |author5=Miura, T |author6=Arai, Y |author7=Mazur, W |author8=Wähälä, K |author9=Adlercreutz, H |title=Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako) |journal=The Journal of Nutrition|date=October 1998|volume=128|issue=10|pages=1710–5|pmid=9772140|doi=10.1093/jn/128.10.1710}}
17. ^{{cite journal|last=Arai|first=Y|author2=Uehara, M |author3=Sato, Y |author4=Kimira, M |author5=Eboshida, A |author6=Adlercreutz, H |author7=Watanabe, S |title=Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake |journal=Journal of Epidemiology / Japan Epidemiological Association|date=March 2000|volume=10|issue=2|pages=127–35|pmid=10778038|doi=10.2188/jea.10.127}}
18. ^{{cite journal|last=Akaza|first=H |author2=Miyanaga, N |author3=Takashima, N |author4=Naito, S |author5=Hirao, Y |author6=Tsukamoto, T |author7=Fujioka, T |author8=Mori, M |author9=Kim, WJ |author10=Song, JM |author11=Pantuck, AJ|title=Comparisons of percent equol producers between prostate cancer patients and controls: case-controlled studies of isoflavones in Japanese, Korean and American residents |journal=Japanese Journal of Clinical Oncology|date=February 2004|volume=34|issue=2|pages=86–9|pmid=15067102|doi=10.1093/jjco/hyh015}}
19. ^{{cite journal|last=Song|first=KB|author2=Atkinson, C |author3=Frankenfeld, CL |author4=Jokela, T |author5=Wähälä, K |author6=Thomas, WK |author7=Lampe, JW |title=Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls |journal=The Journal of Nutrition|date=May 2006|volume=136|issue=5|pages=1347–51|pmid=16614428|doi=10.1093/jn/136.5.1347}}
20. ^{{cite journal|last1=Patisaul|first1=HB|last2=Jefferson|first2=W|title=The pros and cons of phytoestrogens.|pmc=3074428|journal=Front Neuroendocrinol|date=October 2010|volume=31|issue=4|pages=400–419|pmid=20347861|doi=10.1016/j.yfrne.2010.03.003}}
21. ^{{cite journal|last=Setchell|first=KD|author2=Cole, SJ |title=Method of defining equol-producer status and its frequency among vegetarians |journal=The Journal of Nutrition|date=August 2006|volume=136|issue=8|pages=2188–93|pmid=16857839|doi=10.1093/jn/136.8.2188}}
22. ^{{cite journal|last=Teas|first=J.|author2=Hurley, TG |title=Dietary seaweed modifies estrogen and phytoestrogen metabolism in healthy postmenopausal women |journal=The Journal of Nutrition|date=August 2009|volume=139|issue=9|pages=939–44|pmid=19321575|doi=10.3945/jn.108.100834}}
23. ^{{cite journal|last1=Nilsson|first1=Stefan|last2=Koehler|first2=Konrad F.|last3=Gustafsson|first3=Jan-Åke|title=Development of subtype-selective oestrogen receptor-based therapeutics|journal=Nature Reviews Drug Discovery|volume=10|issue=10|year=2011|pages=778–792|issn=1474-1776|doi=10.1038/nrd3551|pmid=21921919}}
24. ^{{cite journal|last1=Jackson|first1=Richard L.|last2=Greiwe|first2=Jeffrey S.|last3=Desai|first3=Pankaj B.|last4=Schwen|first4=Richard J.|title=Single-dose and steady-state pharmacokinetic studies of S-equol, a potent nonhormonal, estrogen receptor β-agonist being developed for the treatment of menopausal symptoms|journal=Menopause|year=2010|pages=1|issn=1072-3714|doi=10.1097/gme.0b013e3181e9779c}}
25. ^{{cite journal | vauthors = Setchell KD, Clerici C, Lephart ED, Cole SJ, Heenan C, Castellani D, Wolfe BE, Nechemias-Zimmer L, Brown NM, Lund TD, Handa RJ, Heubi JE | title = S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora | journal = Am. J. Clin. Nutr. | volume = 81 | issue = 5 | pages = 1072–9 | year = 2005 | pmid = 15883431 | doi = 10.1093/ajcn/81.5.1072| url = }}
26. ^{{Cite journal |pmc = 2884333|year = 2010|last1 = Setchell|first1 = K. D.|title = Equol: History, Chemistry, and Formation|journal = The Journal of Nutrition|volume = 140|issue = 7|pages = 1355S–1362S|last2 = Clerici|first2 = C.|pmid = 20519412|doi = 10.3945/jn.109.119776}}
27. ^{{cite journal|last=Setchell|first=KD |author2=Clerici, C |author3=Lephart, ED |author4=Cole, SJ |author5=Heenan, C |author6=Castellani, D |author7=Wolfe, BE |author8=Nechemias-Zimmer, L |author9=Brown, NM |author10=Lund, TD |author11=Handa, RJ |author12=Heubi, JE|title=S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora |journal=The American Journal of Clinical Nutrition|date=May 2005|volume=81|issue=5|pages=1072–9|pmid=15883431|doi=10.1093/ajcn/81.5.1072 }}
28. ^{{cite journal|last=Setchell|first=KD|author2=Zhao, X |author3=Jha, P |author4=Heubi, JE |author5=Brown, NM |title=The pharmacokinetic behavior of the soy isoflavone metabolite S-(-)equol and its diastereoisomer R-(+)equol in healthy adults determined by using stable-isotope-labeled tracers |journal=The American Journal of Clinical Nutrition|date=Oct 2009|volume=90|issue=4|pages=1029–37|pmid=19710188|doi=10.3945/ajcn.2009.27981|pmc=2744624}}
29. ^{{cite journal|last=Setchell|first=KD|author2=Zhao, X |author3=Shoaf, SE |author4=Ragland, K |title=The pharmacokinetics of S-(-)equol administered as SE5-OH tablets to healthy postmenopausal women |journal=The Journal of Nutrition|date=Nov 2009|volume=139|issue=11|pages=2037–43|pmid=19776178|doi=10.3945/jn.109.110874}}
30. ^{{cite journal|last=Setchell|first=KD|author2=Clerici, C |title=Equol: pharmacokinetics and biological actions |journal=The Journal of Nutrition|date=Jul 2010|volume=140|issue=7|pages=1363S–8S|pmid=20519411|doi=10.3945/jn.109.119784|pmc=2884334}}
31. ^{{cite journal|last1=Prossnitz|first1=Eric R.|last2=Barton|first2=Matthias|title=Estrogen biology: New insights into GPER function and clinical opportunities|journal=Molecular and Cellular Endocrinology|volume=389|issue=1–2|year=2014|pages=71–83|issn=0303-7207|doi=10.1016/j.mce.2014.02.002|pmid=24530924|pmc=4040308}}
{{Phytoestrogens}}{{Estrogenics}}{{Isoflavane}}{{Soy}}

4 : Isoflavandiols|Phytoestrogens|Steroid sulfotransferase inhibitors|Selective ERβ agonists

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/10 10:28:08