词条 | Agriculture | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 |
Agriculture is the science and art of cultivating plants and livestock.[1] Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Pigs, sheep and cattle were domesticated over 10,000 years ago. Plants were independently cultivated in at least 11 regions of the world. Industrial agriculture based on large-scale monoculture in the twentieth century came to dominate agricultural output, though about 2 billion people still depended on subsistence agriculture into the twenty-first. Modern agronomy, plant breeding, agrochemicals such as pesticides and fertilizers, and technological developments have sharply increased yields, while causing widespread ecological and environmental damage. Selective breeding and modern practices in animal husbandry have similarly increased the output of meat, but have raised concerns about animal welfare and environmental damage. Environmental issues include contributions to global warming, depletion of aquifers, deforestation, antibiotic resistance, and growth hormones in industrial meat production. Genetically modified organisms are widely used, although some are banned in certain countries. The major agricultural products can be broadly grouped into foods, fibers, fuels and raw materials (such as rubber). Food classes include cereals (grains), vegetables, fruits, oils, meat, milk, fungi and eggs. Over one-third of the world's workers are employed in agriculture, second only to the service sector, although the number of agricultural workers in developed countries has decreased significantly over the centuries. Etymology and scopeThe word agriculture is a late Middle English adaptation of Latin agricultūra, from ager, "field", which in its turn came from Greek αγρός, and cultūra, "cultivation" or "growing".[2] While agriculture usually refers to human activities, certain species of ant, termite and ambrosia beetle also cultivate crops.[3] Agriculture is defined with varying scopes, in its broadest sense using natural resources to "produce commodities which maintain life, including food, fiber, forest products, horticultural crops, and their related services".[4] Thus defined, it includes arable farming, horticulture, animal husbandry and forestry, but horticulture and forestry are in practice often excluded.[4] History{{Main|History of agriculture}}Origins{{main |Neolithic Revolution}}The development of agriculture enabled the human population to grow many times larger than could be sustained by hunting and gathering.[6] Agriculture began independently in different parts of the globe, and included a diverse range of taxa, in at least 11 separate ">centres of origin.[7] Wild grains were collected and eaten from at least 105,000 years ago.[8] From around 11,500 years ago, the eight Neolithic founder crops, emmer and einkorn wheat, hulled barley, peas, lentils, bitter vetch, chick peas and flax were cultivated in the Levant. Rice was domesticated in China between 11,500 and 6,200 BC with the earliest known cultivation from 5,700 BC,[9] followed by mung, soy and azuki beans. Sheep were domesticated in Mesopotamia between 13,000 and 11,000 years ago.[10] Cattle were domesticated from the wild aurochs in the areas of modern Turkey and Pakistan some 10,500 years ago.[11] Pig production emerged in Eurasia, including Europe, East Asia and Southwest Asia,[12] where wild boar were first domesticated about 10,500 years ago.[13] In the Andes of South America, the potato was domesticated between 10,000 and 7,000 years ago, along with beans, coca, llamas, alpacas, and guinea pigs. Sugarcane and some root vegetables were domesticated in New Guinea around 9,000 years ago. Sorghum was domesticated in the Sahel region of Africa by 7,000 years ago. Cotton was domesticated in Peru by 5,600 years ago,[14] and was independently domesticated in Eurasia. In Mesoamerica, wild teosinte was bred into maize by 6,000 years ago.[15] Scholars have offered multiple hypotheses to explain the historical origins of agriculture. Studies of the transition from hunter-gatherer to agricultural societies indicate an initial period of intensification and increasing sedentism; examples are the Natufian culture in the Levant, and the Early Chinese Neolithic in China. Then, wild stands that had previously been harvested started to be planted, and gradually came to be domesticated.[16][17] CivilizationsIn Eurasia, the Sumerians started to live in villages from about 8,000 BC, relying on the Tigris and Euphrates rivers and a canal system for irrigation. Ploughs appear in pictographs around 3,000 BC; seed-ploughs around 2,300 BC. Farmers grew wheat, barley, vegetables such as lentils and onions, and fruits including dates, grapes, and figs.[18] Ancient Egyptian agriculture relied on the Nile River and its seasonal flooding. Farming started in the predynastic period at the end of the Paleolithic, after 10,000 BC. Staple food crops were grains such as wheat and barley, alongside industrial crops such as flax and papyrus.[19][20] In India, wheat, barley and jujube were domesticated by 9,000 BC, soon followed by sheep and goats.[21] Cattle, sheep and goats were domesticated in Mehrgarh culture by 8,000–6,000 BC.[22][23][23][24] Cotton was cultivated by the 5th-4th millennium BC.[25] Archeological evidence indicates an animal-drawn plough from 2,500 BC in the Indus Valley Civilisation.[26] In China, from the 5th century BC there was a nationwide granary system and widespread silk farming.[27] Water-powered grain mills were in use by the 1st century BC,[28][29] followed by irrigation.[30] By the late 2nd century, heavy ploughs had been developed with iron ploughshares and mouldboards.[31][32] These spread westwards across Eurasia.[33] Asian rice was domesticated 8,200–13,500 years ago – depending on the molecular clock estimate that is used[34] – on the Pearl River in southern China with a single genetic origin from the wild rice Oryza rufipogon.[35] In Greece and Rome, the major cereals were wheat, emmer, and barley, alongside vegetables including peas, beans, and olives. Sheep and goats were kept mainly for dairy products.[36][37] In the Americas, crops domesticated in Mesoamerica (apart from teosinte) include squash, beans, and cocoa.[38] Cocoa was being domesticated by the Mayo Chinchipe of the upper Amazon around 3,000 BC.[39] The turkey was probably domesticated in Mexico or the American Southwest.[40] The Aztecs developed irrigation systems, formed terraced hillsides, fertilized their soil, and developed chinampas or artificial islands. The Mayas used extensive canal and raised field systems to farm swampland from 400 BC.[41][42][43][44][45] Coca was domesticated in the Andes, as were the peanut, tomato, tobacco, and pineapple.[38] Cotton was domesticated in Peru by 3,600 BC.[46] Animals including llamas, alpacas, and guinea pigs were domesticated there.[47] In North America, the indigenous people of the East domesticated crops such as sunflower, tobacco,[48] squash and Chenopodium.[49][50] Wild foods including wild rice and maple sugar were harvested.[51] The domesticated strawberry is a hybrid of a Chilean and a North American species, developed by breeding in Europe and North America.[52] The indigenous people of the Southwest and the Pacific Northwest practiced forest gardening and fire-stick farming. The natives controlled fire on a regional scale to create a low-intensity fire ecology that sustained a low-density agriculture in loose rotation; a sort of "wild" permaculture.[53][54][55][56] A system of companion planting called the Three Sisters was developed on the Great Plains. The three crops were winter squash, maize, and climbing beans.[57][58] Indigenous Australians, long supposed to have been nomadic hunter-gatherers, practised systematic burning to enhance natural productivity in fire-stick farming.[59] The Gunditjmara and other groups developed eel farming and fish trapping systems from some 5,000 years ago.[60] There is evidence of 'intensification' across the whole continent over that period.[61] In two regions of Australia, the central west coast and eastern central, early farmers cultivated yams, native millet, and bush onions, possibly in permanent settlements.[62][63]RevolutionIn the Middle Ages, both in the Islamic world and in Europe, agriculture was transformed with improved techniques and the diffusion of crop plants, including the introduction of sugar, rice, cotton and fruit trees such as the orange to Europe by way of Al-Andalus.[64][65] After 1492, the Columbian exchange brought New World crops such as maize, potatoes, tomatoes, sweet potatoes and manioc to Europe, and Old World crops such as wheat, barley, rice and turnips, and livestock including horses, cattle, sheep and goats to the Americas.[66] Irrigation, crop rotation, and fertilizers advanced beginning in the 19th century, triggered by the British Agricultural Revolution, allowing global population to rise significantly. Since 1900, agriculture in developed nations, and to a lesser extent in the developing world, has seen large rises in productivity as human labor was replaced by mechanization, and assisted by synthetic fertilizers, pesticides, and selective breeding. The Haber-Bosch method allowed the synthesis of ammonium nitrate fertilizer on an industrial scale, greatly increasing crop yields and sustaining a further increase in global population.[67][68] Modern agriculture has raised ecological, political, and economic issues including water pollution, biofuels, genetically modified organisms, tariffs and farm subsidies, leading to alternative approaches such as the organic movement.[69][70]TypesPastoralism involves managing domesticated animals. In nomadic pastoralism, herds of livestock are moved from place to place in search of pasture, fodder, and water. This type of farming is practised in arid and semi-arid regions of Sahara, Central Asia and some parts of India.[71]In shifting cultivation, a small area of forest is cleared by cutting and burning the trees. The cleared land is used for growing crops for a few years until the soil becomes too infertile, and the area is abandoned. Another patch of land is selected and the process is repeated. This type of farming is practiced mainly in areas with abundant rainfall where the forest regenerates quickly. This practice is used in Northeast India, Southeast Asia, and the Amazon Basin.[72] Subsistence farming is practiced to satisfy family or local needs alone, with little left over for transport elsewhere. It is intensively practiced in Monsoon Asia and South-East Asia.[73] An estimated 2.5 billion subsistence farmers worked in 2018, cultivating about 60% of the earth's arable land.[74]Intensive farming is cultivation to maximise profit, with a low fallow ratio and a high use of inputs (water, fertilizer, pesticide and automation). It is practiced mainly in developed countries.[75][76]Contemporary agricultureStatusFrom the twentieth century, intensive agriculture increased productivity. It substituted synthetic fertilizers and pesticides for labor, but caused increased water pollution, and often involved farm subsidies. In recent years there has been a backlash against the environmental effects of conventional agriculture, resulting in the organic, regenerative, and sustainable agriculture movements.[69][77] One of the major forces behind this movement has been the European Union, which first certified organic food in 1991 and began reform of its Common Agricultural Policy (CAP) in 2005 to phase out commodity-linked farm subsidies,[78] also known as decoupling. The growth of organic farming has renewed research in alternative technologies such as integrated pest management, selective breeding,[79] and controlled-environment agriculture.[80][81] Recent mainstream technological developments include genetically modified food.[82] Demand for non-food biofuel crops,[83] development of former farm lands, rising transportation costs, climate change, growing consumer demand in China and India, and population growth,[84] are threatening food security in many parts of the world.[85][86][87][88][89] The International Fund for Agricultural Development posits that an increase in smallholder agriculture may be part of the solution to concerns about food prices and overall food security, given the favorable experience of Vietnam.[90] Soil degradation and diseases such as stem rust are major concerns globally;[91] approximately 40% of the world's agricultural land is seriously degraded.[92][93] By 2015, the agricultural output of China was the largest in the world, followed by the European Union, India and the United States.[82] Economists measure the total factor productivity of agriculture and by this measure agriculture in the United States is roughly 1.7 times more productive than it was in 1948.[94] WorkforceFollowing the three-sector theory, the number of people employed in agriculture and other primary activities (such as fishing) can be more than 80% in the least developed countries, and less than 2% in the most highly developed countries.[95] Since the Industrial Revolution, many countries have made the transition to developed economies, and the proportion of people working in agriculture has steadily fallen. During the 16th century in Europe, for example, between 55 and 75% of the population was engaged in agriculture; by the 19th century, this had dropped to between 35 and 65%.[96] In the same countries today, the figure is less than 10%.[95] At the start of the 21st century, some one billion people, or over 1/3 of the available work force, were employed in agriculture. It constitutes approximately 70% of the global employment of children, and in many countries employs the largest percentage of women of any industry.[106] The service sector overtook the agricultural sector as the largest global employer in 2007.[97] Safety{{Main |Agricultural safety and health}}Agriculture, specifically farming, remains a hazardous industry, and farmers worldwide remain at high risk of work-related injuries, lung disease, noise-induced hearing loss, skin diseases, as well as certain cancers related to chemical use and prolonged sun exposure. On industrialized farms, injuries frequently involve the use of agricultural machinery, and a common cause of fatal agricultural injuries in developed countries is tractor rollovers.[98] Pesticides and other chemicals used in farming can also be hazardous to worker health, and workers exposed to pesticides may experience illness or have children with birth defects.[99] As an industry in which families commonly share in work and live on the farm itself, entire families can be at risk for injuries, illness, and death.[100] Ages 0–6 may be an especially vulnerable population in agriculture;[101] common causes of fatal injuries among young farm workers include drowning, machinery and motor accidents, including with all-terrain vehicles.[100][101] The International Labour Organization considers agriculture "one of the most hazardous of all economic sectors".[102] It estimates that the annual work-related death toll among agricultural employees is at least 170,000, twice the average rate of other jobs. In addition, incidences of death, injury and illness related to agricultural activities often go unreported.[103] The organization has developed the Safety and Health in Agriculture Convention, 2001, which covers the range of risks in the agriculture occupation, the prevention of these risks and the role that individuals and organizations engaged in agriculture should play.[102] In the United States, agriculture has been identified by the National Institute for Occupational Safety and Health as a priority industry sector in the National Occupational Research Agenda to identify and provide intervention strategies for occupational health and safety issues.[104][105] In the European Union, the European Agency for Safety and Health at Work has issued guidelines on implementing health and safety directives in agriculture, livestock farming, horticulture, and forestry.[106] Production{{Main|List of countries by GDP sector composition}}{{See also|List of most important agricultural crops worldwide}}Overall production varies by country as listed. {{Bar chart|float=center| title = Largest countries by agricultural output (in nominal terms) according to IMF and CIA World Factbook, at peak level as of 2018 | table_width=70 | bar_width =50 | data_max =1,120 | label_type =Economy | data_type ={{center|Countries by agricultural output (in nominal terms) at peak level as of 2018 (billions in USD)}} | label1 =(01) {{CHN}} | data1= 1,117 | label2 =(02) {{IND}} | data2= 414 | label3 = {{nowrap|(—) {{EU}}}} | data3= 308 | label4 =(03) {{USA}} | data4= 185 | label5 =(04) {{BRA}} | data5= 162 | label6 =(05) {{IDN}} | data6= 141 | label7 =(06) {{NGR}} | data7= 123 | label8 =(07) {{RUS}} | data8= 108 | label9 =(08) {{PAK}} | data9= 76 | label10 =(09) {{ARG}} | data10= 70 | label11 =(10) {{TUR}} | data11= 64 | label12 =(11) {{JPN}} | data12= 62 | label13 =(12) {{FRA}} | data13= 59 | label14 =(13) {{IRN}} | data14= 57 | label15 =(14) {{AUS}} | data15= 56 | label16 =(15) {{MEX}} | data16= 51 | label17 =(16) {{ITA}} | data17= 50 | label18 =(17) {{ESP}} | data18= 43 | label19 =(18) {{BAN}} | data19= 41 | label20 =(19) {{THA}} | data20= 40 | label21 =(20) {{EGY}} | data21= 40 | caption={{resize|88%|The twenty largest countries by agricultural output (in nominal terms) at peak level as of 2018, according to the IMF and CIA World Factbook.}} | isbn=9780309042482 |date=1990-02-01 }}
Crop cultivation systemsCropping systems vary among farms depending on the available resources and constraints; geography and climate of the farm; government policy; economic, social and political pressures; and the philosophy and culture of the farmer.[108][109] Shifting cultivation (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annual and then perennial crops for a period of several years.[110] Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10–20). This fallow period is shortened if population density grows, requiring the input of nutrients (fertilizer or manure) and some manual pest control. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs.[110] Further industrialization led to the use of monocultures, when one cultivar is planted on a large acreage. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers.[109] Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time, are other kinds of annual cropping systems known as polycultures.[110] In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate) and systems are practiced such as agroforestry. In temperate environments, where ecosystems were predominantly grassland or prairie, highly productive annual farming is the dominant agricultural system.[110] Important categories of food crops include cereals, legumes, forage, fruits and vegetables.[128] Natural fibers include cotton, wool, hemp, silk and flax.[111] Specific crops are cultivated in distinct growing regions throughout the world. Production is listed in millions of metric tons, based on FAO estimates.[128]
Livestock production systems{{Main|Livestock|Animal husbandry}}{{See also|List of domesticated animals}}Animal husbandry is the breeding and raising of animals for meat, milk, eggs, or wool), and for work and transport.[113] Working animals, including horses, mules, oxen, water buffalo, camels, llamas, alpacas, donkeys, and dogs, have for centuries been used to help cultivate fields, harvest crops, wrangle other animals, and transport farm products to buyers.[114] Livestock production systems can be defined based on feed source, as grassland-based, mixed, and landless.[115] {{as of|2010}}, 30% of Earth's ice- and water-free area was used for producing livestock, with the sector employing approximately 1.3 billion people. Between the 1960s and the 2000s, there was a significant increase in livestock production, both by numbers and by carcass weight, especially among beef, pigs and chickens, the latter of which had production increased by almost a factor of 10. Non-meat animals, such as milk cows and egg-producing chickens, also showed significant production increases. Global cattle, sheep and goat populations are expected to continue to increase sharply through 2050.[116] Aquaculture or fish farming, the production of fish for human consumption in confined operations, is one of the fastest growing sectors of food production, growing at an average of 9% a year between 1975 and 2007.[117] During the second half of the 20th century, producers using selective breeding focused on creating livestock breeds and crossbreeds that increased production, while mostly disregarding the need to preserve genetic diversity. This trend has led to a significant decrease in genetic diversity and resources among livestock breeds, leading to a corresponding decrease in disease resistance and local adaptations previously found among traditional breeds.[118] Grassland based livestock production relies upon plant material such as shrubland, rangeland, and pastures for feeding ruminant animals. Outside nutrient inputs may be used, however manure is returned directly to the grassland as a major nutrient source. This system is particularly important in areas where crop production is not feasible because of climate or soil, representing 30–40 million pastoralists.[110] Mixed production systems use grassland, fodder crops and grain feed crops as feed for ruminant and monogastric (one stomach; mainly chickens and pigs) livestock. Manure is typically recycled in mixed systems as a fertilizer for crops.[115] Landless systems rely upon feed from outside the farm, representing the de-linking of crop and livestock production found more prevalently in Organisation for Economic Co-operation and Development member countries. Synthetic fertilizers are more heavily relied upon for crop production and manure utilization becomes a challenge as well as a source for pollution.[115] Industrialized countries use these operations to produce much of the global supplies of poultry and pork. Scientists estimate that 75% of the growth in livestock production between 2003 and 2030 will be in confined animal feeding operations, sometimes called factory farming. Much of this growth is happening in developing countries in Asia, with much smaller amounts of growth in Africa.[116] Some of the practices used in commercial livestock production, including the usage of growth hormones, are controversial.[119] Production practices{{see|Tillage|Crop rotation|Irrigation}}Tillage is the practice of breaking up the soil with tools such as the plow or harrow to prepare for planting, for nutrient incorporation, or for pest control. Tillage varies in intensity from conventional to no-till. It may improve productivity by warming the soil, incorporating fertilizer and controlling weeds, but also renders soil more prone to erosion, triggers the decomposition of organic matter releasing CO2, and reduces the abundance and diversity of soil organisms.[120][121] Pest control includes the management of weeds, insects, mites, and diseases. Chemical (pesticides), biological (biocontrol), mechanical (tillage), and cultural practices are used. Cultural practices include crop rotation, culling, cover crops, intercropping, composting, avoidance, and resistance. Integrated pest management attempts to use all of these methods to keep pest populations below the number which would cause economic loss, and recommends pesticides as a last resort.[122] Nutrient management includes both the source of nutrient inputs for crop and livestock production, and the method of utilization of manure produced by livestock. Nutrient inputs can be chemical inorganic fertilizers, manure, green manure, compost and minerals.[123] Crop nutrient use may also be managed using cultural techniques such as crop rotation or a fallow period. Manure is used either by holding livestock where the feed crop is growing, such as in managed intensive rotational grazing, or by spreading either dry or liquid formulations of manure on cropland or pastures.[124][125]Water management is needed where rainfall is insufficient or variable, which occurs to some degree in most regions of the world.[110] Some farmers use irrigation to supplement rainfall. In other areas such as the Great Plains in the U.S. and Canada, farmers use a fallow year to conserve soil moisture to use for growing a crop in the following year.[126] Agriculture represents 70% of freshwater use worldwide.[127]According to a report by the International Food Policy Research Institute, agricultural technologies will have the greatest impact on food production if adopted in combination with each other; using a model that assessed how eleven technologies could impact agricultural productivity, food security and trade by 2050, the International Food Policy Research Institute found that the number of people at risk from hunger could be reduced by as much as 40% and food prices could be reduced by almost half.[128] Payment for ecosystem services is a method of providing additional incentives to encourage farmers to conserve some aspects of the environment. Measures might include paying for reforestation upstream of a city, to improve the supply of fresh water.[129]Crop alteration and biotechnology{{Main|Plant breeding}}Crop alteration has been practiced by humankind for thousands of years, since the beginning of civilization. Altering crops through breeding practices changes the genetic make-up of a plant to develop crops with more beneficial characteristics for humans, for example, larger fruits or seeds, drought-tolerance, or resistance to pests. Significant advances in plant breeding ensued after the work of geneticist Gregor Mendel. His work on dominant and recessive alleles, although initially largely ignored for almost 50 years, gave plant breeders a better understanding of genetics and breeding techniques. Crop breeding includes techniques such as plant selection with desirable traits, self-pollination and cross-pollination, and molecular techniques that genetically modify the organism.[130] Domestication of plants has, over the centuries increased yield, improved disease resistance and drought tolerance, eased harvest and improved the taste and nutritional value of crop plants. Careful selection and breeding have had enormous effects on the characteristics of crop plants. Plant selection and breeding in the 1920s and 1930s improved pasture (grasses and clover) in New Zealand. Extensive X-ray and ultraviolet induced mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn (maize) and barley.[131][132] The Green Revolution popularized the use of conventional hybridization to sharply increase yield by creating "high-yielding varieties". For example, average yields of corn (maize) in the US have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. South American average wheat yields are around 2 t/ha, African under 1 t/ha, and Egypt and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as France is over 8 t/ha. Variations in yields are due mainly to variation in climate, genetics, and the level of intensive farming techniques (use of fertilizers, chemical pest control, growth control to avoid lodging).[133][134][135] Genetic engineering{{Main|Genetic engineering}}{{See also|Genetically modified food|Genetically modified crops|Regulation of the release of genetic modified organisms|Genetically modified food controversies}}Genetically modified organisms (GMO) are organisms whose genetic material has been altered by genetic engineering techniques generally known as recombinant DNA technology. Genetic engineering has expanded the genes available to breeders to utilize in creating desired germlines for new crops. Increased durability, nutritional content, insect and virus resistance and herbicide tolerance are a few of the attributes bred into crops through genetic engineering.[136] For some, GMO crops cause food safety and food labeling concerns. Numerous countries have placed restrictions on the production, import or use of GMO foods and crops.[137] Currently a global treaty, the Biosafety Protocol, regulates the trade of GMOs. There is ongoing discussion regarding the labeling of foods made from GMOs, and while the EU currently requires all GMO foods to be labeled, the US does not.[138] Herbicide-resistant seed has a gene implanted into its genome that allows the plants to tolerate exposure to herbicides, including glyphosate. These seeds allow the farmer to grow a crop that can be sprayed with herbicides to control weeds without harming the resistant crop. Herbicide-tolerant crops are used by farmers worldwide.[139] With the increasing use of herbicide-tolerant crops, comes an increase in the use of glyphosate-based herbicide sprays. In some areas glyphosate resistant weeds have developed, causing farmers to switch to other herbicides.[140][141] Some studies also link widespread glyphosate usage to iron deficiencies in some crops, which is both a crop production and a nutritional quality concern, with potential economic and health implications.[142] Other GMO crops used by growers include insect-resistant crops, which have a gene from the soil bacterium Bacillus thuringiensis (Bt), which produces a toxin specific to insects. These crops resist damage by insects.[143] Some believe that similar or better pest-resistance traits can be acquired through traditional breeding practices, and resistance to various pests can be gained through hybridization or cross-pollination with wild species. In some cases, wild species are the primary source of resistance traits; some tomato cultivars that have gained resistance to at least 19 diseases did so through crossing with wild populations of tomatoes.[144] Environmental impact{{Main|Environmental issues with agriculture}}Effects and costsAgriculture imposes multiple external costs upon society through effects such as pesticide damage to nature (especially herbicides and insecticides), nutrient runoff, excessive water usage, and loss of natural environment. A 2000 assessment of agriculture in the UK determined total external costs for 1996 of £2,343 million, or £208 per hectare.[145] A 2005 analysis of these costs in the US concluded that cropland imposes approximately $5 to $16 billion ($30 to $96 per hectare), while livestock production imposes $714 million.[146] Both studies, which focused solely on the fiscal impacts, concluded that more should be done to internalize external costs. Neither included subsidies in their analysis, but they noted that subsidies also influence the cost of agriculture to society.[145][146] Agriculture seeks to increase yield and to reduce costs. Yield increases with inputs such as fertilisers and removal of pathogens, predators, and competitors (such as weeds). Costs decrease with increasing scale of farm units, such as making fields larger; this means removing hedges, ditches and other areas of habitat. Pesticides kill insects, plants and fungi. These and other measures have cut biodiversity to very low levels on intensively farmed land.[147] In 2010, the International Resource Panel of the United Nations Environment Programme assessed the environmental impacts of consumption and production. It found that agriculture and food consumption are two of the most important drivers of environmental pressures, particularly habitat change, climate change, water use and toxic emissions. Agriculture is the main source of toxins released into the environment, including insecticides, especially those used on cotton.[148] The 2011 UNEP Green Economy report states that "[a]gricultural operations, excluding land use changes, produce approximately 13 per cent of anthropogenic global GHG emissions. This includes GHGs emitted by the use of inorganic fertilisers agro-chemical pesticides and herbicides; (GHG emissions resulting from production of these inputs are included in industrial emissions); and fossil fuel-energy inputs.[149] "On average we find that the total amount of fresh residues from agricultural and forestry production for second- generation biofuel production amounts to 3.8 billion tonnes per year between 2011 and 2050 (with an average annual growth rate of 11 per cent throughout the period analysed, accounting for higher growth during early years, 48 per cent for 2011–2020 and an average 2 per cent annual expansion after 2020)."[149] Livestock issuesA senior UN official, Henning Steinfeld, said that "Livestock are one of the most significant contributors to today's most serious environmental problems".[150] Livestock production occupies 70% of all land used for agriculture, or 30% of the land surface of the planet. It is one of the largest sources of greenhouse gases, responsible for 18% of the world's greenhouse gas emissions as measured in CO2 equivalents. By comparison, all transportation emits 13.5% of the CO2. It produces 65% of human-related nitrous oxide (which has 296 times the global warming potential of CO2,) and 37% of all human-induced methane (which is 23 times as warming as CO2.) It also generates 64% of the ammonia emission. Livestock expansion is cited as a key factor driving deforestation; in the Amazon basin 70% of previously forested area is now occupied by pastures and the remainder used for feedcrops.[151] Through deforestation and land degradation, livestock is also driving reductions in biodiversity. Furthermore, the UNEP states that "methane emissions from global livestock are projected to increase by 60 per cent by 2030 under current practices and consumption patterns."[149] Land and water issues{{See also|Environmental impact of irrigation}}Land transformation, the use of land to yield goods and services, is the most substantial way humans alter the Earth's ecosystems, and is considered the driving force in the loss of biodiversity. Estimates of the amount of land transformed by humans vary from 39 to 50%.[152] Land degradation, the long-term decline in ecosystem function and productivity, is estimated to be occurring on 24% of land worldwide, with cropland overrepresented.[153] The UN-FAO report cites land management as the driving factor behind degradation and reports that 1.5 billion people rely upon the degrading land. Degradation can be deforestation, desertification, soil erosion, mineral depletion, or chemical degradation (acidification and salinization).[110] Eutrophication, excessive nutrients in aquatic ecosystems resulting in algal blooms and anoxia, leads to fish kills, loss of biodiversity, and renders water unfit for drinking and other industrial uses. Excessive fertilization and manure application to cropland, as well as high livestock stocking densities cause nutrient (mainly nitrogen and phosphorus) runoff and leaching from agricultural land. These nutrients are major nonpoint pollutants contributing to eutrophication of aquatic ecosystems and pollution of groundwater, with harmful effects on human populations.[154] Fertilisers also reduce terrestrial biodiversity by increasing competition for light, favouring those species that are able to benefit from the added nutrients.[155]Agriculture accounts for 70 percent of withdrawals of freshwater resources.[156] Agriculture is a major draw on water from aquifers, and currently draws from those underground water sources at an unsustainable rate. It is long known that aquifers in areas as diverse as northern China, the Upper Ganges and the western US are being depleted, and new research extends these problems to aquifers in Iran, Mexico and Saudi Arabia.[157] Increasing pressure is being placed on water resources by industry and urban areas, meaning that water scarcity is increasing and agriculture is facing the challenge of producing more food for the world's growing population with reduced water resources.[158] Agricultural water usage can also cause major environmental problems, including the destruction of natural wetlands, the spread of water-borne diseases, and land degradation through salinization and waterlogging, when irrigation is performed incorrectly.[159] Pesticides{{Main|Environmental impact of pesticides}}Pesticide use has increased since 1950 to 2.5{{nbsp}}million short tons annually worldwide, yet crop loss from pests has remained relatively constant.[160] The World Health Organization estimated in 1992 that three million pesticide poisonings occur annually, causing 220,000 deaths.[161] Pesticides select for pesticide resistance in the pest population, leading to a condition termed the "pesticide treadmill" in which pest resistance warrants the development of a new pesticide.[162] An alternative argument is that the way to "save the environment" and prevent famine is by using pesticides and intensive high yield farming, a view exemplified by a quote heading the Center for Global Food Issues website: 'Growing more per acre leaves more land for nature'.[163][164] However, critics argue that a trade-off between the environment and a need for food is not inevitable,[165] and that pesticides simply replace good agronomic practices such as crop rotation.[162] The Push–pull agricultural pest management technique involves intercropping, using plant aromas to repel pests from crops (push) and to lure them to a place from which they can then be removed (pull).[166] Global warming{{main|Climate change and agriculture}}Global warming and agriculture are interrelated on a global scale. Global warming affects agriculture through changes in average temperatures, rainfall, and weather extremes (like storms and heat waves); changes in pests and diseases; changes in atmospheric carbon dioxide and ground-level ozone concentrations; changes in the nutritional quality of some foods;[167] and changes in sea level.[168] Global warming is already affecting agriculture, with effects unevenly distributed across the world.[169] Future climate change will probably negatively affect crop production in low latitude countries, while effects in northern latitudes may be positive or negative.[169] Global warming will probably increase the risk of food insecurity for some vulnerable groups, such as the poor.[170]Animal husbandry is also responsible for greenhouse gas production of {{CO2}} and a percentage of the world's methane, and future land infertility, and the displacement of wildlife. Agriculture contributes to climate change by anthropogenic emissions of greenhouse gases, and by the conversion of non-agricultural land such as forest for agricultural use.[171] Agriculture, forestry and land-use change contributed around 20 to 25% to global annual emissions in 2010.[172] A range of policies can reduce the risk of negative climate change impacts on agriculture,[173][174] and greenhouse gas emissions from the agriculture sector.[175][176][177] Sustainability{{See also|List of sustainable agriculture topics}}Current farming methods have resulted in over-stretched water resources, high levels of erosion and reduced soil fertility. There is not enough water to continue farming using current practices; therefore how critical water, land, and ecosystem resources are used to boost crop yields must be reconsidered. A solution would be to give value to ecosystems, recognizing environmental and livelihood tradeoffs, and balancing the rights of a variety of users and interests.[178] Inequities that result when such measures are adopted would need to be addressed, such as the reallocation of water from poor to rich, the clearing of land to make way for more productive farmland, or the preservation of a wetland system that limits fishing rights.[179] Technological advancements help provide farmers with tools and resources to make farming more sustainable.[180] Technology permits innovations like conservation tillage, a farming process which helps prevent land loss to erosion, reduces water pollution, and enhances carbon sequestration.[181] According to a report by the International Food Policy Research Institute (IFPRI),[128] agricultural technologies will have the greatest impact on food production if adopted in combination with each other; using a model that assessed how eleven technologies could impact agricultural productivity, food security and trade by 2050, IFPRI found that the number of people at risk from hunger could be reduced by as much as 40% and food prices could be reduced by almost half.[128] The caloric demand of Earth's projected population, with current climate change predictions, can be satisfied by additional improvement of agricultural methods, expansion of agricultural areas, and a sustainability-oriented consumer mindset.[182] Energy dependenceSince the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides. The vast majority of this energy input comes from fossil fuel sources.[183] Between the 1960s and the 1980s, the Green Revolution transformed agriculture around the globe, with world grain production increasing significantly (between 70% and 390% for wheat and 60% to 150% for rice, depending on geographic area)[184] as world population doubled. Heavy reliance on petrochemicals has raised concerns that oil shortages could increase costs and reduce agricultural output.[219] Industrialized agriculture depends on fossil fuels in two fundamental ways: direct consumption on the farm and manufacture of inputs used on the farm. Direct consumption includes the use of lubricants and fuels to operate farm vehicles and machinery.[185]
Indirect consumption includes the manufacture of fertilizers, pesticides, and farm machinery.[185] In particular, the production of nitrogen fertilizer can account for over half of agricultural energy usage.[189] Together, direct and indirect consumption by US farms accounts for about 2% of the nation's energy use. Direct and indirect energy consumption by U.S. farms peaked in 1979, and has since gradually declined.[185] Food systems encompass not just agriculture but off-farm processing, packaging, transporting, marketing, consumption, and disposal of food and food-related items. Agriculture accounts for less than one-fifth of food system energy use in the US.[190][187] DisciplinesAgricultural economics{{main|Agricultural economics}}Agricultural economics refers to economics as it relates to the "production, distribution and consumption of [agricultural] goods and services".[191] Combining agricultural production with general theories of marketing and business as a discipline of study began in the late 1800s, and grew significantly through the 20th century.[192] Although the study of agricultural economics is relatively recent, major trends in agriculture have significantly affected national and international economies throughout history, ranging from tenant farmers and sharecropping in the post-American Civil War Southern United States[193] to the European feudal system of manorialism.[194] In the United States, and elsewhere, food costs attributed to food processing, distribution, and agricultural marketing, sometimes referred to as the value chain, have risen while the costs attributed to farming have declined. This is related to the greater efficiency of farming, combined with the increased level of value addition (e.g. more highly processed products) provided by the supply chain. Market concentration has increased in the sector as well, and although the total effect of the increased market concentration is likely increased efficiency, the changes redistribute economic surplus from producers (farmers) and consumers, and may have negative implications for rural communities.[195] National government policies can significantly change the economic marketplace for agricultural products, in the form of taxation, subsidies, tariffs and other measures.[197] Since at least the 1960s, a combination of trade restrictions, exchange rate policies and subsidies have affected farmers in both the developing and the developed world. In the 1980s, non-subsidized farmers in developing countries experienced adverse effects from national policies that created artificially low global prices for farm products. Between the mid-1980s and the early 2000s, several international agreements limited agricultural tariffs, subsidies and other trade restrictions.[198] However, {{as of|2009|lc=y}}, there was still a significant amount of policy-driven distortion in global agricultural product prices. The three agricultural products with the greatest amount of trade distortion were sugar, milk and rice, mainly due to taxation. Among the oilseeds, sesame had the greatest amount of taxation, but overall, feed grains and oilseeds had much lower levels of taxation than livestock products. Since the 1980s, policy-driven distortions have seen a greater decrease among livestock products than crops during the worldwide reforms in agricultural policy.[197] Despite this progress, certain crops, such as cotton, still see subsidies in developed countries artificially deflating global prices, causing hardship in developing countries with non-subsidized farmers.[199] Unprocessed commodities such as corn, soybeans, and cattle are generally graded to indicate quality, affecting the price the producer receives. Commodities are generally reported by production quantities, such as volume, number or weight.[200] Agricultural science{{further|Agricultural science|Agronomy}}Agricultural science is a broad multidisciplinary field of biology that encompasses the parts of exact, natural, economic and social sciences used in the practice and understanding of agriculture. It covers topics such as agronomy, plant breeding and genetics, plant pathology, crop modelling, soil science, entomology, production techniques and improvement, study of pests and their management, and study of adverse environmental effects such as soil degradation, waste management, and bioremediation.[201][202]The scientific study of agriculture began in the 18th century, when Johann Friedrich Mayer conducted experiments on the use of gypsum (hydrated calcium sulphate) as a fertilizer.[203] Research became more systematic when in 1843, John Lawes and Henry Gilbert began a set of long-term agronomy field experiments at Rothamsted Research Station in England; some of them, such as the Park Grass Experiment, are still running.[204][205] In America, the Hatch Act of 1887 provided funding for what it was the first to call "agricultural science", driven by farmers' interest in fertilizers.[206] In agricultural entomology, the USDA began to research biological control in 1881; it instituted its first large program in 1905, searching Europe and Japan for natural enemies of the gypsy moth and brown-tail moth, establishing parasitoids (such as solitary wasps) and predators of both pests in the USA.[207][208][209] Policy{{main|Agricultural policy}}
There are many influences on the creation of agricultural policy, including consumers, agribusiness, trade lobbies and other groups. Agribusiness interests hold a large amount of influence over policy making, in the form of lobbying and campaign contributions. Political action groups, including those interested in environmental issues and labor unions, also provide influence, as do lobbying organizations representing individual agricultural commodities.[213] The Food and Agriculture Organization of the United Nations (FAO) leads international efforts to defeat hunger and provides a forum for the negotiation of global agricultural regulations and agreements. Dr. Samuel Jutzi, director of FAO's animal production and health division, states that lobbying by large corporations has stopped reforms that would improve human health and the environment. For example, proposals in 2010 for a voluntary code of conduct for the livestock industry that would have provided incentives for improving standards for health, and environmental regulations, such as the number of animals an area of land can support without long-term damage, were successfully defeated due to large food company pressure.[214] See also{{Main|Outline of agriculture}}{{div col|colwidth=25em}}
References1. ^{{cite book |title=Safety and health in agriculture |url={{google books|plainurl=y|id=GtBa6XIW_aQC|page=77}} |year=1999 |publisher=International Labour Organization |isbn=978-92-2-111517-5 |page=77 |accessdate=13 September 2010 |deadurl=no |archiveurl=https://web.archive.org/web/20110722061757/http://books.google.com/books?id=GtBa6XIW_aQC |archivedate=22 July 2011 |df=dmy-all |quote=defined agriculture as 'all forms of activities connected with growing, harvesting and primary processing of all types of crops, with the breeding, raising and caring for animals, and with tending gardens and nurseries'.}} 2. ^{{cite book |page=14 |title=The Oxford Dictionary of Word Histories |editor=Chantrell, Glynnis |publisher=Oxford University Press |year=2002 |isbn=978-0-19-863121-7}} 3. ^{{cite journal |title=The Evolution of Agriculture in Insects |journal=Annual Review of Ecology, Evolution, and Systematics |volume=36 |pages=563–595 |date=December 2005 |doi=10.1146/annurev.ecolsys.36.102003.152626 |author1=Mueller, Ulrich G. |author2=Gerardo, Nicole M. |author3=Aanen, Duur K. |author4=Six, Diana L. |author5=Schultz, Ted R. |df=dmy-all }} 4. ^1 {{cite web |url=http://www.maine.gov/education/aged/definition.html |title=Definition of Agriculture |publisher=State of Maine |accessdate=6 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20120323075557/http://www.maine.gov/education/aged/definition.html |archivedate=23 March 2012 |df=dmy-all}} 5. ^{{cite journal |last1=Denham |first1=T. P. |title=Origins of Agriculture at Kuk Swamp in the Highlands of New Guinea |journal=Science |volume=301 |issue=5630 |year=2003 |pages=189–193 |doi=10.1126/science.1085255 |pmid=12817084 }} 6. ^{{cite journal |author=Bocquet-Appel, Jean-Pierre |title=When the World's Population Took Off: The Springboard of the Neolithic Demographic Transition |journal=Science |date=29 July 2011 |volume=333 |issue=6042 |pages=560–561 |doi=10.1126/science.1208880 |pmid=21798934 |bibcode=2011Sci...333..560B }} 7. ^1 {{cite journal |doi=10.1073/pnas.1323964111 |title=Current perspectives and the future of domestication studies |journal=PNAS |volume=111 |issue=17 |pages=6139–6146 |year=2014 |last1=Larson |first1=G. |last2=Piperno |first2=D. R. |last3=Allaby |first3=R. G. |last4=Purugganan |first4=M. D. |last5=Andersson |first5=L. |last6=Arroyo-Kalin |first6=M. |last7=Barton |first7=L. |last8=Climer Vigueira |first8=C. |last9=Denham |first9=T. |last10=Dobney |first10=K. |last11=Doust |first11=A. N. |last12=Gepts |first12=P. |last13=Gilbert |first13=M. T. P. |last14=Gremillion |first14=K. J. |last15=Lucas |first15=L. |last16=Lukens |first16=L. |last17=Marshall |first17=F. B. |last18=Olsen |first18=K. M. |last19=Pires |first19=J.C. |last20=Richerson |first20=P. J. |last21=Rubio De Casas |first21=R. |last22=Sanjur |first22=O.I. |last23=Thomas |first23=M. G. |last24=Fuller |first24=D.Q. |doi-access=free |pmid=24757054 |pmc=4035915 |bibcode=2014PNAS..111.6139L}} 8. ^{{cite web |last1=Harmon |first1=Katherine |title=Humans feasting on grains for at least 100,000 years |url=http://blogs.scientificamerican.com/observations/humans-feasting-on-grains-for-at-least-100000-years/ |publisher=Scientific American |accessdate=28 August 2016 |date=17 December 2009 |deadurl=no |archiveurl=https://web.archive.org/web/20160917013143/http://blogs.scientificamerican.com/observations/humans-feasting-on-grains-for-at-least-100000-years/ |archivedate=17 September 2016 |df=dmy-all}} 9. ^{{cite journal |pmid=17898767 |year=2007 |last1=Zong |first1=Y. |last2=When |first2=Z. |last3=Innes |first3=J. B. |last4=Chen |first4=C. |last5=Wang |first5=Z. |last6=Wang |first6=H. |title=Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China |volume=449 |issue=7161 |pages=459–462 |doi=10.1038/nature06135 |journal=Nature |bibcode=2007Natur.449..459Z }} 10. ^{{cite book |title=Sheep and Goat Science |edition=Fifth |last=Ensminger |first=M. E. |author2=Parker, R. O. |year=1986 |publisher=Interstate Printers and Publishers |isbn=978-0-8134-2464-4}} 11. ^{{cite journal |author=McTavish, E. J. |author2=Decker, J. E. |author3=Schnabel, R.D. |author4=Taylor, J. F. |author5=Hillis, D. M. |year=2013 |title=New World cattle show ancestry from multiple independent domestication events |journal=PNAS |volume=110 |issue=15 |pages=E1398–1406 |doi=10.1073/pnas.1303367110 |pmid=23530234 |pmc=3625352 |bibcode=2013PNAS..110E1398M }} 12. ^{{Cite journal |last=Larson |first=Greger |last2=Dobney |first2=Keith |last3=Albarella |first3=Umberto |last4=Fang |first4=Meiying |last5=Matisoo-Smith |first5=Elizabeth |last6=Robins |first6=Judith |last7=Lowden |first7=Stewart |last8=Finlayson |first8=Heather |last9=Brand |first9=Tina |date=2005-03-11 |title=Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication |journal=Science |volume=307 |issue=5715 |pages=1618–1621 |doi=10.1126/science.1106927 |pmid=15761152|bibcode=2005Sci...307.1618L }} 13. ^{{Cite journal |last=Larson |first=Greger |last2=Albarella |first2=Umberto |last3=Dobney |first3=Keith |last4=Rowley-Conwy |first4=Peter |last5=Schibler |first5=Jörg |last6=Tresset |first6=Anne |last7=Vigne |first7=Jean-Denis |last8=Edwards |first8=Ceiridwen J. |last9=Schlumbaum |first9=Angela |date=25 September 2007 |title=Ancient DNA, pig domestication, and the spread of the Neolithic into Europe |journal=PNAS |volume=104 |issue=39 |pages=15276–15281 |doi=10.1073/pnas.0703411104 |pmid=17855556|pmc=1976408 |bibcode=2007PNAS..10415276L }} 14. ^{{cite book |last=Broudy |first=Eric |title=The Book of Looms: A History of the Handloom from Ancient Times to the Present |url={{google books|plainurl=y|id=shN5_-W1RzcC|page=81}} |year=1979 |publisher=UPNE |isbn=978-0-87451-649-4 |page=81 |deadurl=no |archiveurl=https://web.archive.org/web/20180210232500/{{google books|plainurl=y|id=shN5_-W1RzcC|page=81}} |archivedate=10 February 2018 |df=dmy-all }} 15. ^Johannessen, S.; Hastorf, C. A. (eds.) Corn and Culture in the Prehistoric New World, Westview Press, Boulder, Colorado. 16. ^Hillman, G. C. (1996) "Late Pleistocene changes in wild plant-foods available to hunter-gatherers of the northern Fertile Crescent: Possible preludes to cereal cultivation". In D. R. Harris (ed.) The Origins and Spread of Agriculture and Pastoralism in Eurasia, UCL Books, London, pp.159-203; Sato, Y. (2003) "Origin of rice cultivation in the Yangtze River basin". In Y. Yasuda (ed.) The Origins of Pottery and Agriculture, Roli Books, New Delhi, p. 196 17. ^{{cite book |title=Australia and the Origins of Agriculture |author=Gerritsen, R. |date=2008 |publisher=Archaeopress |pages=29–30}} 18. ^{{cite web |title=Farming |url=http://www.mesopotamia.co.uk/staff/resources/background/bg08/home.html |publisher=British Museum |accessdate=15 June 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20160616222522/http://www.mesopotamia.co.uk/staff/resources/background/bg08/home.html |archivedate=16 June 2016 }} 19. ^{{cite journal |author=Janick, Jules |title=Ancient Egyptian Agriculture and the Origins of Horticulture |journal=Acta Hort. |volume=583 |pages=23–39 |url=https://www.hort.purdue.edu/newcrop/Hort_306/text/lec06.pdf}} 20. ^{{cite book |author=Kees, Herman |title=Ancient Egypt: A Cultural Topography |publisher=University of Chicago Press |date=1961 }} 21. ^Gupta, Anil K. in Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration, Current Science, Vol. 87, No. 1, 10 July 2004 59. Indian Academy of Sciences. 22. ^Baber, Zaheer (1996). The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India. State University of New York Press. 19. {{ISBN|0-7914-2919-9}}. 23. ^1 Harris, David R. and Gosden, C. (1996). The Origins and Spread of Agriculture and Pastoralism in Eurasia: Crops, Fields, Flocks And Herds. Routledge. p. 385. {{ISBN|1-85728-538-7}}. 24. ^Possehl, Gregory L. (1996). Mehrgarh in Oxford Companion to Archaeology, edited by Brian Fagan. Oxford University Press. 25. ^Stein, Burton (1998). A History of India. Blackwell Publishing. p. 47. {{ISBN|0-631-20546-2}}. 26. ^{{Cite journal |title=Thematic evolution of ISTRO: transition in scientific issues and research focus from 1955 to 2000 |first=R. |last=Lal |journal=Soil and Tillage Research |volume=61 |issue=1–2 |date=2001 |pages=3–12 |doi=10.1016/S0167-1987(01)00184-2}} 27. ^Needham, Joseph (1986). Science and Civilization in China: Volume 6, Part 2. Taipei: Caves Books. pp. 55-57. 28. ^Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering. Taipei: Caves Books. p. 184 29. ^Needham, Volume 4, Part 2, 89, 110. 30. ^Needham, Volume 4, Part 2, 110. 31. ^Robert Greenberger, The Technology of Ancient China, Rosen Publishing Group, 2006, pp. 11–12. 32. ^Wang Zhongshu, trans. by K. C. Chang and Collaborators, Han Civilization (New Haven and London: Yale University Press, 1982). 33. ^{{cite book |url={{google books|plainurl=y|id=SaJlbWK_-FcC|page=270}} |author=Glick, Thomas F. |page=270 |title=Medieval Science, Technology And Medicine: An Encyclopedia |publisher=Psychology Press |year=2005 |isbn=978-0415969307 |series=Volume 11 of The Routledge Encyclopedias of the Middle Ages Series}} 34. ^{{Cite journal | last1=Molina | first1=J. | last2=Sikora | first2=M. | last3=Garud | first3=N. | last4=Flowers | first4=J. M. | last5=Rubinstein | first5=S. | last6=Reynolds | first6=A. | last7=Huang | first7=P. | last8=Jackson | first8=S. | last9=Schaal | first9=B. A. | last10=Bustamante | doi=10.1073/pnas.1104686108 | first10=C. D. | last11=Boyko | first11=A. R. | last12=Purugganan | first12=M. D. | title=Molecular evidence for a single evolutionary origin of domesticated rice | journal=Proceedings of the National Academy of Sciences | volume=108 | issue=20 | pages=8351–8356 | year=2011 | pmid=21536870| pmc=3101000| bibcode=2011PNAS..108.8351M }} 35. ^{{cite journal |title=A map of rice genome variation reveals the origin of cultivated rice |journal=Nature |doi=10.1038/nature11532 |year=2012 |last1=Huang |first1=Xuehui |last2=Kurata |first2=Nori |last3=Wei |first3=Xinghua |last4=Wang |first4=Zi-Xuan |last5=Wang |first5=Ahong |last6=Zhao |first6=Qiang |last7=Zhao |first7=Yan|last8=Liu |first8=Kunyan |last9=Lu |first9=Hengyun |last10=Li |first10=Wenjun |last11=Gu |first11=Yunli |last12=Lu |first12=Yiqi |last13=Zhou |first13=Congcong|last14=Fan|first14=Danlin |last15=Weng |first15=Qijun |last16=Zhu |first16=Chuanrang |last17=Huang |first17=Tao |last18=Zhang |first18=Lei|last19=Wang |first19=Yongchun |last20=Feng |first20=Lei |last21=Furuumi |first21=Hiroyasu |last22=Kubo |first22=Takahiko |last23=Miyabayashi|first23=Toshie |last24=Yuan |first24=Xiaoping |last25=Xu |first25=Qun |last26=Dong |first26=Guojun |last27=Zhan |first27=Qilin |last28=Li |first28=Canyang |last29=Fujiyama |first29=Asao|last30=Toyoda |first30=Atsushi |volume=490 |issue=7421 |pages=497–501 |pmid=23034647 |display-authors=8 |bibcode=2012Natur.490..497H}} 36. ^Koester, Helmut (1995), History, Culture, and Religion of the Hellenistic Age, 2nd edition, Walter de Gruyter, {{ISBN|3-11-014693-2}}, pp. 76–77. 37. ^White, K. D. (1970), Roman Farming (Cornell University Press) 38. ^1 {{cite book |author=Murphy, Denis |title=Plants, Biotechnology and Agriculture |url={{google books|plainurl=y|id=etQsieKuRH8C|page=153}} |year=2011 |publisher=CABI |isbn=978-1-84593-913-7 |page=153}} 39. ^{{cite news |last1=Davis |first1=Nicola |title=Origin of chocolate shifts 1,400 miles and 1,500 years |url=https://www.theguardian.com/science/2018/oct/29/origin-of-chocolate-shifts-1400-miles-and-1500-years-cacao-ecuador |accessdate=31 October 2018 |work=The Guardian |date=29 October 2018}} 40. ^{{cite journal |last1=Speller |first1=Camilla F. |display-authors=etal |title=Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication|journal=PNAS |date=2010 |volume=107 |issue=7 |pages=2807–2812 |doi=10.1073/pnas.0909724107 |pmid=20133614 |pmc=2840336|bibcode=2010PNAS..107.2807S }} 41. ^{{cite journal |url=http://www.nature.com/news/2010/101105/full/news.2010.587.html|title=Mayans converted wetlands to farmland |author=Mascarelli, Amanda |journal=Nature |date=5 November 2010 |doi=10.1038/news.2010.587}} 42. ^{{cite journal |url=https://www.soils.org/publications/sh/articles/53/6/3 |title=Invisible Artifacts: Uncovering Secrets of Ancient Maya Agriculture with Modern Soil Science |journal=Soil Horizons |author=Morgan, John |date=6 November 2013 |doi=10.2136/sh2012-53-6-lf |volume=53 |issue=6 |page=3 |deadurl=yes |archiveurl=https://web.archive.org/web/20150321200108/https://www.soils.org/publications/sh/articles/53/6/3 |archivedate=21 March 2015}} 43. ^{{cite journal | title=A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping | last=Spooner | first=David M. |first2=Karen |last2=McLean |first3=Gavin |last3=Ramsay |first4=Robbie |last4=Waugh |first5=Glenn J. |last5=Bryan |journal=PNAS | volume=102 | issue=41 | doi=10.1073/pnas.0507400102 | pmc=1253605 | pages=14694–14699 | pmid=16203994 | year=2005 |bibcode=2005PNAS..10214694S }} 44. ^{{cite book |author=Office of International Affairs |title=Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation |date=1989 |url=http://www.nap.edu/openbook.php?isbn=030904264X&page=92 |work=nap.edu |isbn=978-0309042642 |page=92|doi=10.17226/1398 }} 45. ^{{cite book | author=John Michael Francis |title=Iberia and the Americas | publisher=ABC-CLIO|year=2005|url={{google books|plainurl=y|id=OMNoS-g1h8cC|page=867}} | isbn=978-1-85109-426-4 }} 46. ^{{cite book |last=Broudy |first=Eric |title=The Book of Looms: A History of the Handloom from Ancient Times to the Present|url={{google books|plainurl=y|id=shN5_-W1RzcC|page=81}} |year=1979 |publisher=UPNE |isbn=978-0-87451-649-4 |page=81}} 47. ^{{cite book |last1=Rischkowsky |first1=Barbara |last2=Pilling |first2=Dafydd |title=The State of the World's Animal Genetic Resources for Food and Agriculture |url={{google books|plainurl=y|id=Skpj197tU0oC|page=10 }}|year=2007 |publisher=Food & Agriculture Organization |isbn=978-92-5-105762-9 |page=10}} 48. ^{{cite journal | last1=Heiser Jr | first1=Carl B. | year=1992 | title=On possible sources of the tobacco of prehistoric Eastern North America | url=| journal=Current Anthropology | volume=33 | issue=| pages=54–56 | doi=10.1086/204032}} 49. ^Prehistoric Food Production in North America, edited by Richard I. Ford. Museum of Anthropology, University of Michigan, Anthropological Papers 75. 50. ^Adair, Mary J. (1988) Prehistoric Agriculture in the Central Plains. Publications in Anthropology 16. University of Kansas, Lawrence. 51. ^{{cite book |last=Smith |first=Andrew |title=The Oxford Encyclopedia of Food and Drink in America |url={{google books|plainurl=y|id=DOJMAgAAQBAJ|page=1}} |year=2013 |publisher=OUP USA |isbn=978-0-19-973496-2 |page=1}} 52. ^{{cite web |last1=Hardigan |first1=Michael A. |title=P0653: Domestication History of Strawberry: Population Bottlenecks and Restructuring of Genetic Diversity through Time |url=https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/28409 |publisher=Pland & Animal Genome Conference XXVI January 13–17, 2018 San Diego, California |accessdate=28 February 2018}} 53. ^{{cite book |title=Fire in California's Ecosystems |editor1=Sugihara, Neil G. |editor2=Van Wagtendonk, Jan W. |editor3=Shaffer, Kevin E. |editor4=Fites-Kaufman, Joann |editor5=Thode, Andrea E. |publisher=University of California Press |year=2006 |page=417 |chapter=17 |isbn=978-0-520-24605-8}} 54. ^{{cite book |editor=Blackburn, Thomas C. |editor2=Anderson, Kat |year=1993 |title=Before the Wilderness: Environmental Management by Native Californians |publisher=Ballena Press |isbn=978-0879191269}} 55. ^{{cite book |url={{google books|plainurl=y|id=nuYuYGHwCygC|page=135 }}|pages=135, 173–202 |last=Cunningham |first=Laura |title=State of Change: Forgotten Landscapes of California |publisher=Heyday |year=2010 |isbn=978-1597141369}} 56. ^{{cite book |last=Anderson |first=M. Kat |title=Tending the Wild: Native American Knowledge And the Management of California's Natural Resources |publisher=University of California Press |year=2006 |isbn=978-0520248519}} 57. ^{{cite book |title=Agriculture of the Hidatsa Indians: An Indian Interpretation |last=Wilson |first=Gilbert |year=1917 |publisher=Dodo Press |isbn=978-1409942337 |pages=25 and passim |url=http://www.bookdepository.com/publishers/Dodo-Press |ref=wilson1917 |deadurl=yes |archiveurl=https://web.archive.org/web/20160314055513/http://www.bookdepository.com/publishers/Dodo-Press |archivedate=2016-03-14 }} 58. ^{{cite journal|last=Landon|first=Amanda J.|title=The "How" of the Three Sisters: The Origins of Agriculture in Mesoamerica and the Human Niche|journal=Nebraska Anthropologist|year=2008|url=http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1039&context=nebanthro |pages=110–124}} 59. ^{{cite journal | last1=Jones | first1=R. | year=1969 | title=Fire-stick Farming | url=| journal=Australian Natural History | volume=16 | issue=| page=224 }} 60. ^Williams, E. (1988) Complex Hunter-Gatherers: A Late Holocene Example from Temperate Australia. British Archaeological Reports, Oxford 61. ^Lourandos, H. (1997) Continent of Hunter-Gatherers: New Perspectives in Australian Prehistory Cambridge, Cambridge University Press 62. ^{{cite book | last=Gammage | first=Bill |authorlink=Bill Gammage | date=October 2011 | title=The Biggest Estate on Earth: How Aborigines made Australia | url={{google books |plainurl=y |id=aUddY9fGkNMC}} | publisher=Allen & Unwin | isbn=978-1742377483 |pages=281–304}} 63. ^{{cite book |author=Gerritsen, R. |date=2008 |title=Australia and the Origins of Agriculture |publisher=Archaeopress |pages=29–30}} 64. ^1 {{cite journal |first=Andrew M. |last=Watson |date=1974 |title=The Arab Agricultural Revolution and Its Diffusion, 700–1100 |journal=The Journal of Economic History |volume=34 |issue=1 |pages=8–35 |doi=10.1017/s0022050700079602}} 65. ^{{cite book |author=National Geographic |title=Food Journeys of a Lifetime |url={{google books|plainurl=y|id=h2Q5BgAAQBAJ|page=126}} |year=2015 |publisher=National Geographic Society |isbn=978-1-4262-1609-1 |page=126}} 66. ^{{cite web |url=http://www.gilderlehrman.org/history-by-era/american-indians/essays/columbian-exchange |title=The Columbian Exchange |publisher=The Gilder Lehrman Institute of American History |author=Crosby, Alfred |accessdate=11 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130703092537/http://www.gilderlehrman.org/history-by-era/american-indians/essays/columbian-exchange |archivedate=3 July 2013 |df=dmy-all }} 67. ^{{cite web |url=http://www.hort.purdue.edu/newcrop/hort_306/text/lec32.pdf |title=Agricultural Scientific Revolution: Mechanical |author=Janick, Jules |publisher=Purdue University |accessdate=24 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130525074054/http://www.hort.purdue.edu/newcrop/Hort_306/text/lec32.pdf |archivedate=25 May 2013 |df=dmy-all }} 68. ^{{cite journal |url=http://www.nae.edu/Publications/Bridge/52548/52645.aspx |title=The Impact of Mechanization on Agriculture |journal=The Bridge on Agriculture and Information Technology |date=2011 |volume=41 |number=3 |author=Reid, John F. |deadurl=no |archiveurl=https://web.archive.org/web/20131105033809/http://www.nae.edu/Publications/Bridge/52548/52645.aspx |archivedate=5 November 2013 |df=dmy-all}} 69. ^1 {{cite web |url=https://www.motherjones.com/tom-philpott/2013/04/history-nitrogen-fertilizer-ammonium-nitrate |author=Philpott, Tom |title=A Brief History of Our Deadly Addiction to Nitrogen Fertilizer |date=19 April 2013 |accessdate=7 May 2013 |publisher=Mother Jones |deadurl=no |archiveurl=https://web.archive.org/web/20130505115125/https://www.motherjones.com/tom-philpott/2013/04/history-nitrogen-fertilizer-ammonium-nitrate |archivedate=5 May 2013 |df=dmy-all }} 70. ^{{cite journal |url=http://www.smh.com.au/world/ten-worst-famines-of-the-20th-century-20110815-1iu2w.html |title=Ten worst famines of the 20th century |journal=Sydney Morning Herald |date=15 August 2011 |deadurl=no |archiveurl=https://web.archive.org/web/20140703063152/http://www.smh.com.au/world/ten-worst-famines-of-the-20th-century-20110815-1iu2w.html |archivedate=3 July 2014 |df=dmy-all }} 71. ^{{cite book | last=Blench | first=Roger | title=Pastoralists in the new millennium | publisher=FAO | date=2001 | pages=11–12 | url=http://www.odi.org.uk/work/projects/pdn/eps.pdf | deadurl=no | archiveurl=https://web.archive.org/web/20120201000745/http://www.odi.org.uk/work/projects/pdn/eps.pdf | archivedate=1 February 2012 | df=dmy-all }} 72. ^{{cite web |title=Shifting cultivation |url=http://www.survivalinternational.org/about/swidden |publisher=Survival International |accessdate=28 August 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20160829015112/http://www.survivalinternational.org/about/swidden |archivedate=29 August 2016| df=dmy-all}} 73. ^{{cite book |author=Waters, Tony |title=The Persistence of Subsistence Agriculture: life beneath the level of the marketplace |publisher=Lexington Books |date=2007}} 74. ^{{Cite journal |last= |date=7 March 2018 |title=Chinese project offers a brighter farming future |department=Editorial |journal=Nature |volume=555 |issue=7695 |page=141 |doi=10.1038/d41586-018-02742-3 |pmid=29517037 }} 75. ^{{Cite web|url=http://www.britannica.com/eb/article-9042533|archiveurl=https://web.archive.org/web/20060705221311/http://www.britannica.com/eb/article-9042533|deadurl=y|title=Encyclopædia Britannica's definition of Intensive Agriculture|archivedate=5 July 2006}} 76. ^{{Cite web|url=http://www.bbc.co.uk/schools/gcsebitesize/biology/livingthingsenvironment/4foodandsustainabilityrev5.shtml|archiveurl=https://web.archive.org/web/20070503035007/http://www.bbc.co.uk/schools/gcsebitesize/biology/livingthingsenvironment/4foodandsustainabilityrev5.shtml|deadurl=y|title=BBC School fact sheet on intensive farming|archivedate=3 May 2007}} 77. ^{{cite web |publisher=The World Bank |year=1995 |url=http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469372&piPK=64165421&menuPK=64166093&entityID=000009265_3970311122936 |title=Overcoming agricultural pollution of water: the challenge of integrating agricultural and environmental policies in the European Union, Volume 1 |accessdate=15 April 2013 |author=Scheierling, Susanne M. |deadurl=yes |archiveurl=https://web.archive.org/web/20130605112426/http://econ.worldbank.org/external/default/main?pagePK=64165259&theSitePK=469372&piPK=64165421&menuPK=64166093&entityID=000009265_3970311122936 |archivedate=5 June 2013 |df=dmy-all }} 78. ^{{cite web |publisher=European Commission |year=2003 |url=http://ec.europa.eu/agriculture/capreform/index_en.htm |title=CAP Reform |accessdate=15 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20101017124251/http://ec.europa.eu/agriculture/capreform/index_en.htm |archivedate=17 October 2010 |df=dmy-all }} 79. ^{{Cite book |last1=Poincelot |first1=Raymond P. |title=Organic Farming |journal=Towards a More Sustainable Agriculture |pages=14–32 |doi=10.1007/978-1-4684-1506-3_2 |year=1986 |isbn=978-1-4684-1508-7 }} 80. ^{{Cite news |url=http://www.agweek.com/business/agriculture/4527042-cutting-edge-technology-will-change-farming |title=The cutting-edge technology that will change farming |work=Agweek |date=9 November 2018 |accessdate=23 November 2018 |archive-url=https://web.archive.org/web/20181117020138/http://www.agweek.com/business/agriculture/4527042-cutting-edge-technology-will-change-farming |archive-date=23 November 2018}} 81. ^{{Cite news |author=Charles, Dan |url=https://www.npr.org/sections/thesalt/2017/11/02/561462293/hydroponic-veggies-are-taking-over-organic-and-a-move-to-ban-them-fails |title=Hydroponic Veggies Are Taking Over Organic, And A Move To Ban Them Fails |work=NPR |date=3 November 2017 |accessdate=24 November 2018}} 82. ^GM Science Review First Report {{webarchive |url=https://web.archive.org/web/20131016100707/http://www.bis.gov.uk/files/file15655.pdf |date=October 16, 2013 }}, Prepared by the UK GM Science Review panel (July 2003). Chairman David King, p. 9 83. ^{{cite journal |author1=Smith, Kate |author2=Edwards, Rob |date=8 March 2008 |url=http://www.heraldscotland.com/2008-the-year-of-global-food-crisis-1.828546 |title=2008: The year of global food crisis |journal=The Herald |deadurl=no |archiveurl=https://web.archive.org/web/20130411220739/http://www.heraldscotland.com/2008-the-year-of-global-food-crisis-1.828546 |archivedate=11 April 2013 |df=dmy-all }} 84. ^{{cite journal |url=http://www.csmonitor.com/2008/0118/p08s01-comv.html |title=The global grain bubble |journal=The Christian Science Monitor |date=18 January 2008 |accessdate=26 September 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20091130063759/http://www.csmonitor.com/2008/0118/p08s01-comv.html |archivedate=30 November 2009 |df=dmy-all }} 85. ^{{cite news |url=http://news.bbc.co.uk/1/hi/world/7284196.stm |title=The cost of food: Facts and figures |publisher=BBC |date=16 October 2008 |accessdate=26 September 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20090120025945/http://news.bbc.co.uk/1/hi/world/7284196.stm |archivedate=20 January 2009 |df=dmy-all }} 86. ^{{cite journal |author=Walt, Vivienne |date=27 February 2008 |url=http://www.time.com/time/world/article/0,8599,1717572,00.html |title=The World's Growing Food-Price Crisis |journal=Time |deadurl=no |archiveurl=https://web.archive.org/web/20111129211855/http://www.time.com/time/world/article/0,8599,1717572,00.html |archivedate=29 November 2011 |df=dmy-all}} 87. ^Watts, Jonathan (4 December 2007). [https://www.theguardian.com/world/2007/dec/04/china.business "Riots and hunger feared as demand for grain sends food costs soaring"] {{webarchive|url=https://web.archive.org/web/20130901074034/http://www.theguardian.com/world/2007/dec/04/china.business |date=1 September 2013 }}, The Guardian (London). 88. ^Mortished, Carl (7 March 2008)."Already we have riots, hoarding, panic: the sign of things to come?" {{webarchive|url=https://web.archive.org/web/20110814134028/http://www.timesonline.co.uk/tol/news/environment/article3500975.ece |date=14 August 2011}}, The Times (London). 89. ^Borger, Julian (26 February 2008). [https://www.theguardian.com/environment/2008/feb/26/food.unitednations "Feed the world? We are fighting a losing battle, UN admits"] {{webarchive|url=https://web.archive.org/web/20161225150554/https://www.theguardian.com/environment/2008/feb/26/food.unitednations |date=25 December 2016}}, The Guardian (London). 90. ^{{cite web |url=http://www.ifad.org/operations/food/farmer.htm |title=Food prices: smallholder farmers can be part of the solution |publisher=International Fund for Agricultural Development |accessdate=24 April 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20130505224355/http://www.ifad.org/operations/food/farmer.htm |archivedate=5 May 2013 |df=dmy-all}} 91. ^{{cite web |url=http://www.fao.org/agriculture/crops/rust/stem/rust-report/stem-ug99racettksk/en/ |title=Wheat Stem Rust – UG99 (Race TTKSK)|publisher=FAO|accessdate=6 January 2014|deadurl=no|archiveurl=https://web.archive.org/web/20140107064545/http://www.fao.org/agriculture/crops/rust/stem/rust-report/stem-ug99racettksk/en/|archivedate=7 January 2014|df=dmy-all}} 92. ^Sample, Ian (31 August 2007). [https://www.theguardian.com/environment/2007/aug/31/climatechange.food "Global food crisis looms as climate change and population growth strip fertile land"] {{webarchive |url=https://web.archive.org/web/20160429094959/https://www.theguardian.com/environment/2007/aug/31/climatechange.food |date=29 April 2016}}, The Guardian (London). 93. ^{{cite news |url=http://news.mongabay.com/2006/1214-unu.html |title=Africa may be able to feed only 25% of its population by 2025 |archiveurl=https://web.archive.org/web/20111127175559/http://news.mongabay.com/2006/1214-unu.html |archivedate=27 November 2011 |work=Mongabay |date=14 December 2006 |accessdate=15 July 2016 |deadurl=yes |df=}} 94. ^{{cite web |publisher=USDA Economic Research Service |url=http://www.ers.usda.gov/data/agproductivity/ |title=Agricultural Productivity in the United States |date=5 July 2012 |accessdate=22 April 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20130201021133/http://www.ers.usda.gov/Data/AgProductivity/ |archivedate=1 February 2013 |df=dmy-all}} 95. ^1 {{cite web |url=https://www.cia.gov/library/publications/the-world-factbook/fields/2048.html|title=Labor Force – By Occupation|publisher=Central Intelligence Agency |website=The World Factbook |accessdate=4 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20140522214333/https://www.cia.gov/library/publications/the-world-factbook/fields/2048.html |archivedate=22 May 2014 |df=dmy-all}} 96. ^{{cite journal |url=http://economics.ouls.ox.ac.uk/13621/1/uuid9ef3c3c6-512f-44b6-b74e-53266cc42ae2-ATTACHMENT01.pdf |title=Economic structure and agricultural productivity in Europe, 1300–1800 |journal=European Review of Economic History |volume=3 |pages=1–25 |author=Allen, Robert C. |deadurl=yes |archiveurl=https://web.archive.org/web/20141027195415/http://economics.ouls.ox.ac.uk/13621/1/uuid9ef3c3c6-512f-44b6-b74e-53266cc42ae2-ATTACHMENT01.pdf |archivedate=27 October 2014 }} 97. ^{{cite news |url=http://www.financialexpress.com/news/story/191279|title=Services sector overtakes farming as world's biggest employer: ILO |agency=Associated Press |date=26 January 2007 |accessdate=24 April 2013 |publisher=The Financial Express |deadurl=no |archiveurl=https://web.archive.org/web/20131013062206/http://www.financialexpress.com/news/story/191279| archivedate=13 October 2013 |df=dmy-all}} 98. ^{{cite web |url=https://www.cdc.gov/niosh/topics/aginjury/ |title=NIOSH Workplace Safety & Health Topic: Agricultural Injuries |publisher=Centers for Disease Control and Prevention |accessdate=16 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20071028181205/http://www.cdc.gov/niosh/topics/aginjury/ |archivedate=28 October 2007 |df=dmy-all }} 99. ^{{Cite journal |url=https://www.cdc.gov/niosh/docs/2012-108/ |title=NIOSH Pesticide Poisoning Monitoring Program Protects Farmworkers |publisher=Centers for Disease Control and Prevention |accessdate=15 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130402004253/http://www.cdc.gov/niosh/docs/2012%2D108/ |archivedate=2 April 2013 |df=dmy-all |doi=10.26616/NIOSHPUB2012108 |year=2011}} 100. ^1 {{cite web |url=https://www.cdc.gov/niosh/topics/agriculture/ |title=NIOSH Workplace Safety & Health Topic: Agriculture |publisher=Centers for Disease Control and Prevention |accessdate=16 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20071009224012/http://www.cdc.gov/niosh/topics/agriculture/ |archivedate=9 October 2007 |df=dmy-all}} 101. ^1 {{Cite journal |last=Weichelt |first=Bryan |last2=Gorucu |first2=Serap |date=17 February 2018 |title=Supplemental surveillance: a review of 2015 and 2016 agricultural injury data from news reports on AgInjuryNews.org |url=http://injuryprevention.bmj.com/content/early/2018/02/16/injuryprev-2017-042671 |journal=Injury Prevention |pages=injuryprev–2017–042671 |doi=10.1136/injuryprev-2017-042671 |pmid=29386372}} 102. ^1 2 {{cite web |url=http://www.ilo.org/safework/info/standards-and-instruments/codes/WCMS_161135/lang--en/index.htm |title=Safety and health in agriculture |publisher=International Labour Organization |accessdate=1 April 2018 |date=21 March 2011}} 103. ^{{cite web |url=http://www.ilo.org/safework/areasofwork/hazardous-work/WCMS_356550/lang--en/index.htm |title=Agriculture: A hazardous work |publisher=International Labour Organization |accessdate=1 April 2018 |date=15 June 2009 }} 104. ^{{cite web|url=https://www.cdc.gov/nora/councils/agff/default.html|title=CDC – NIOSH – NORA Agriculture, Forestry and Fishing Sector Council|last=|first=|date=21 March 2018|website=|publisher=NIOSH|archive-url=|archive-date=|dead-url=|accessdate=7 April 2018}} 105. ^{{cite web |url=https://www.cdc.gov/niosh/programs/agff/ |title=CDC – NIOSH Program Portfolio : Agriculture, Forestry and Fishing : Program Description |date=28 February 2018 |publisher=NIOSH |accessdate=7 April 2018}} 106. ^{{cite web |title=Protecting health and safety of workers in agriculture, livestock farming, horticulture and forestry |url=https://osha.europa.eu/en/tools-and-publications/publications/protecting-health-and-safety-workers-agriculture-livestock/view |publisher=European Agency for Safety and Health at Work |accessdate=10 April 2018 |date=17 August 2017}} 107. ^1 2 {{cite web |url=http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=95 |title=UNCTADstat – Table view |accessdate=2017-11-26 |deadurl=no |archiveurl=https://web.archive.org/web/20171020072414/http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=95 |archivedate=20 October 2017 |df=dmy-all }} 108. ^{{cite web |publisher=Food and Agriculture Organization |url=http://www.fao.org/farmingsystems/description_en.htm |title=Analysis of farming systems |accessdate=22 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130806063804/http://www.fao.org/farmingsystems/description_en.htm |archivedate=6 August 2013 |df=dmy-all }} 109. ^1 Acquaah, G. 2002. Agricultural Production Systems. pp. 283–317 in "Principles of Crop Production, Theories, Techniques and Technology". Prentice Hall, Upper Saddle River, NJ. 110. ^1 2 3 4 5 6 Chrispeels, M.J.; Sadava, D.E. 1994. "Farming Systems: Development, Productivity, and Sustainability". pp. 25–57 in Plants, Genes, and Agriculture. Jones and Bartlett, Boston, MA. 111. ^{{cite web|title=Profiles of 15 of the world's major plant and animal fibres|url=http://www.fao.org/natural-fibres-2009/about/15-natural-fibres/en/|publisher=FAO|accessdate=26 March 2018|date=2009}} 112. ^1 2 3 {{cite web |url=http://faostat.fao.org/ |title=Food and Agriculture Organization of the United Nations (FAOSTAT) |accessdate=2 February 2013 | archiveurl=https://web.archive.org/web/20130118190636/http://faostat.fao.org/| archivedate=18 January 2013}} 113. ^{{cite book |author=Clutton-Brock, Juliet |title=A Natural History of Domesticated Mammals |url={{google books|plainurl=y|id=cgL-EbbB8a0C|page=1}} |year=1999 |publisher=Cambridge University Press |isbn=978-0-521-63495-3 |pages=1–2}} 114. ^{{cite book | last=Falvey | first=John Lindsay | authorlink=Lindsay Falvey | year=1985 | title=Introduction to Working Animals | isbn=978-1-86252-992-2 | location=Melbourne, Australia | publisher=MPW Australia}} 115. ^1 2 {{cite web |author1=Sere, C. |author2=Steinfeld, H. |author3=Groeneweld, J. |year=1995 |url=http://www.fao.org/WAIRDOCS/LEAD/X6101E/x6101e00.htm#Contents|title=Description of Systems in World Livestock Systems – Current status issues and trends |publisher=U.N. Food and Agriculture Organization |accessdate=8 September 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20121026004040/http://www.fao.org/WAIRDOCS/LEAD/X6101E/X6101E00.HTM#Contents |archivedate=26 October 2012 |df=dmy-all}} 116. ^1 {{cite journal |title=Livestock production: recent trends, future prospects |author=Thornton, Philip K. |doi=10.1098/rstb.2010.0134 |pmid=20713389 |journal=Philosophical Transactions of the Royal Society B |date=27 September 2010 |volume=365 |issue=1554 |pages=2853–2867 |doi-access=free |df=dmy-all|pmc=2935116 }} 117. ^{{cite journal |url=http://content.time.com/time/health/article/0,8599,1663604,00.html |title=Fish Farming's Growing Dangers |journal=Time |author=Stier, Ken |date=19 September 2007|deadurl=no |archiveurl=https://web.archive.org/web/20130907071708/http://content.time.com/time/health/article/0,8599,1663604,00.html |archivedate=7 September 2013 |df=dmy-all}} 118. ^{{cite journal |title=A global view of livestock biodiversity and conservation – Globaldiv |author=Ajmone-Marsan, P. |journal=Animal Genetics |date=May 2010 |doi=10.1111/j.1365-2052.2010.02036.x |pmid=20500752 |volume=41 |issue=supplement S1 |pages=1–5 |url=http://infoscience.epfl.ch/record/148417 |deadurl=no |archiveurl=https://web.archive.org/web/20170803140941/https://infoscience.epfl.ch/record/148417 |archivedate=3 August 2017 |df=dmy-all}} 119. ^{{cite web |url=http://europa.eu/rapid/press-release_IP-02-604_en.pdf |title=Growth Promoting Hormones Pose Health Risk to Consumers, Confirms EU Scientific Committee |date=23 April 2002 |accessdate=6 April 2013 |publisher=European Union |deadurl=no |archiveurl=https://web.archive.org/web/20130502123053/http://europa.eu/rapid/press-release_IP-02-604_en.pdf |archivedate=2 May 2013 |df=dmy-all}} 120. ^Brady, N. C.; Weil, R. R. 2002. Elements of the Nature and Properties of Soils. Prentice Hall. 121. ^Acquaah, G. 2002. "Land Preparation and Farm Energy" pp. 318–338 in Principles of Crop Production, Theories, Techniques and Technology. Prentice Hall. 122. ^Acquaah, G. 2002. "Pesticide Use in U.S. Crop Production" pp. 240–282 in Principles of Crop Production, Theories, Techniques and Technology. Prentice Hall. 123. ^Acquaah, G. 2002. "Soil and Land" pp. 165–210 in Principles of Crop Production, Theories, Techniques and Technology. Prentice Hall, Upper Saddle River, NJ. 124. ^Chrispeels, M. J.; Sadava, D.E. 1994. "Nutrition from the Soil" pp. 187–218 in Plants, Genes, and Agriculture. Jones and Bartlett, Boston, MA. 125. ^Brady, N. C.; Weil, R. R. 2002. "Practical Nutrient Management" pp. 472–515 in Elements of the Nature and Properties of Soils. Pearson Prentice Hall, Upper Saddle River, NJ. 126. ^Acquaah, G. 2002. "Plants and Soil Water" pp. 211–239 in Principles of Crop Production, Theories, Techniques and Technology. Prentice Hall, Upper Saddle River, NJ. 127. ^{{cite journal |author1=Pimentel, D. |author2=Berger, D. |author3=Filberto, D. |author4=Newton, M. |year=2004 |title=Water Resources: Agricultural and Environmental Issues |journal=BioScience |volume=54 |pages=909–918 |doi=10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2 |issue=10 |doi-access=free}} 128. ^1 2 {{cite web |url=http://www.ifpri.org/publication/food-security-world-natural-resource-scarcity |author=International Food Policy Research Institute |title=Food Security in a World of Growing Natural Resource Scarcity |year=2014 |publisher=CropLife International |accessdate=1 July 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20140305043943/http://www.ifpri.org/publication/food-security-world-natural-resource-scarcity |archivedate=5 March 2014 |df=dmy-all}} 129. ^{{cite journal | last1=Tacconi | first1=L. | year=2012 | title=Redefining payments for environmental services | journal=Ecological Economics | volume=73 | issue=1| pages=29–36 | doi=10.1016/j.ecolecon.2011.09.028}} 130. ^{{cite web |url=http://www.cls.casa.colostate.edu/TransgenicCrops/history.html |title=History of Plant Breeding|date=29 January 2004 |publisher=Colorado State University |accessdate=11 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130121061931/http://cls.casa.colostate.edu/TransgenicCrops/history.html |archivedate=21 January 2013 |df=dmy-all}} 131. ^{{cite journal|last=Stadler |first=L. J. |authorlink=Lewis Stadler |author2=Sprague, G.F. |title=Genetic Effects of Ultra-Violet Radiation in Maize: I. Unfiltered Radiation |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=22 |issue=10 |pages=572–578 |date=15 October 1936 |url=http://www.pnas.org/cgi/reprint/22/10/579.pdf |doi=10.1073/pnas.22.10.572 |accessdate=11 October 2007 |pmid=16588111 |pmc=1076819 |archiveurl=https://web.archive.org/web/20071024233407/http://www.pnas.org/cgi/reprint/22/10/579.pdf |archivedate=24 October 2007 | deadurl=no |bibcode=1936PNAS...22..572S }} 132. ^{{cite book |last=Berg |first=Paul |author2=Singer, Maxine |title=George Beadle: An Uncommon Farmer. The Emergence of Genetics in the 20th century |publisher=Cold Springs Harbor Laboratory Press |date=15 August 2003 |isbn=978-0-87969-688-7 }} 133. ^{{cite journal |last=Ruttan |first=Vernon W. |title=Biotechnology and Agriculture: A Skeptical Perspective |journal=AgBioForum |volume=2 |issue=1 |pages=54–60 |date=December 1999 |url=http://www.agbioforum.org/v2n1/v2n1a10-ruttan.pdf |deadurl=no |archiveurl=https://web.archive.org/web/20130521021149/http://www.agbioforum.org/v2n1/v2n1a10-ruttan.pdf |archivedate=21 May 2013 |df=dmy-all}} 134. ^{{cite journal |last=Cassman |first=K. |title=Ecological intensification of cereal production systems: The Challenge of increasing crop yield potential and precision agriculture |journal=Proceedings of a National Academy of Sciences Colloquium, Irvine, California |date=5 December 1998 |url=http://www.lsc.psu.edu/nas/Speakers/Cassman%20manuscript.html |accessdate=11 October 2007 |archiveurl=https://web.archive.org/web/20071024001804/http://www.lsc.psu.edu/nas/Speakers/Cassman%20manuscript.html |archivedate=24 October 2007 | deadurl=no}} 135. ^Conversion note: 1 bushel of wheat=60 pounds (lb) ≈ 27.215 kg. 1 bushel of maize=56 pounds ≈ 25.401 kg 136. ^{{cite web |url=http://www.who.int/foodsafety/publications/biotech/20questions/en/index.html|title=20 Questions on Genetically Modified Foods |publisher=World Health Organization |accessdate=16 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130327015739/http://www.who.int/foodsafety/publications/biotech/20questions/en/index.html |archivedate=27 March 2013 |df=dmy-all}} 137. ^{{cite web |url=http://current.com/groups/news-blog/93975745_peru-bans-genetically-modified-foods-as-us-lags.htm |title=Peru bans genetically modified foods as US lags |date=28 November 2012 |publisher=Current TV |accessdate=7 May 2013 |author=Whiteside, Stephanie |deadurl=yes |archiveurl=https://web.archive.org/web/20130324013255/http://current.com/groups/news-blog/93975745_peru-bans-genetically-modified-foods-as-us-lags.htm |archivedate=24 March 2013 }} 138. ^{{cite book |author=Shiva, Vandana |authorlink=Vandana Shiva |title=Earth Democracy: Justice, Sustainability, and Peace |publisher=South End Press |location=Cambridge, MA |year=2005}} 139. ^{{cite web |url=http://www.fao.org/docrep/006/y5031e/y5031e0i.htm |title=Benefits and risks of the use of herbicide-resistant crops |author1=Kathrine Hauge Madsen |author2=Jens Carl Streibig |publisher=FAO |accessdate=4 May 2013 |website=Weed Management for Developing Countries |deadurl=no |archiveurl=https://web.archive.org/web/20130604013840/http://www.fao.org/docrep/006/y5031e/y5031e0i.htm |archivedate=4 June 2013 |df=dmy-all}} 140. ^{{cite web |url=http://www.rafiusa.org/pubs/Farmers_Guide_to_GMOs.pdf |title=Farmers Guide to GMOs |publisher=Rural Advancement Foundation International |accessdate=16 April 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20120501145751/http://www.rafiusa.org/pubs/Farmers_Guide_to_GMOs.pdf |archivedate=1 May 2012 |df=dmy-all |date=2013-01-11 }} 141. ^{{cite journal |url=https://www.bloomberg.com/news/articles/2008-02-13/report-raises-alarm-over-superweedsbusinessweek-business-news-stock-market-and-financial-advice |title=Report Raises Alarm over 'Super-weeds' |journal=Bloomberg BusinessWeek |date=13 February 2008 |author=Hindo, Brian |deadurl=no |archiveurl=https://web.archive.org/web/20161226181242/https://www.bloomberg.com/news/articles/2008-02-13/report-raises-alarm-over-superweedsbusinessweek-business-news-stock-market-and-financial-advice |archivedate=26 December 2016 |df=dmy-all }} 142. ^{{cite journal | last1=Ozturk | display-authors=etal | year=2008 | title=Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots | url=https://www.researchgate.net/publication/5669940 | journal=New Phytologist | volume=177 | issue=4| pages=899–906 | doi=10.1111/j.1469-8137.2007.02340.x | pmid=18179601 | deadurl=no | archiveurl=https://web.archive.org/web/20170113232909/https://www.researchgate.net/publication/5669940 | archivedate=13 January 2017 | df=dmy-all }} 143. ^{{cite web |url=http://www.aces.uiuc.edu/vista/html_pubs/biotech/insect.htm |title=Insect-resistant Crops Through Genetic Engineering |publisher=University of Illinois |accessdate=4 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130121073949/http://www.aces.uiuc.edu/vista/html_pubs/biotech/insect.htm |archivedate=21 January 2013 |df=dmy-all}} 144. ^{{cite book |author=Kimbrell, A. |title=Fatal Harvest: The Tragedy of Industrial Agriculture |publisher=Island Press |location=Washington |year=2002}} 145. ^1 {{cite journal |last1=Pretty |year=2000 |title=An assessment of the total external costs of UK agriculture |journal=Agricultural Systems |volume=65 |issue=2 |pages=113–136 |doi=10.1016/S0308-521X(00)00031-7 |first1=J. |display-authors=1 |last2=Brett |first2=C. |last3=Gee |first3=D. |last4=Hine |first4=R. E. |last5=Mason |first5=C. F. |last6=Morison |first6=J. I. L. |last7=Raven |first7=H. |last8=Rayment |first8=M. D. |last9=Van Der Bijl |first9=G. |url=https://www.researchgate.net/publication/222549141 |deadurl=no |archiveurl=https://web.archive.org/web/20170113233847/https://www.researchgate.net/publication/222549141 |archivedate=13 January 2017 |df=dmy-all }} 146. ^1 {{cite journal |last1=Tegtmeier |first1=E. M. |last2=Duffy |first2=M. |year=2005 |title=External Costs of Agricultural Production in the United States |journal=The Earthscan Reader in Sustainable Agriculture |url=http://www.organicvalley.coop/fileadmin/pdf/ag_costs_IJAS2004.pdf |deadurl=no |archiveurl=https://web.archive.org/web/20090205134016/http://www.organicvalley.coop/fileadmin/pdf/ag_costs_IJAS2004.pdf |archivedate=5 February 2009 |df=dmy-all }} 147. ^{{cite journal |last1=Richards |first1=A. J. |title=Does Low Biodiversity Resulting from Modern Agricultural Practice Affect Crop Pollination and Yield? |journal=Annals of Botany |date=2001 |volume=88 |pages=165–172 |doi=10.1006/anbo.2001.146 |url=https://watermark.silverchair.com/880165.pdf |accessdate=10 July 2018 |doi-broken-date=2018-11-03}} 148. ^{{cite web |url=http://www.unep.org/resourcepanel/Publications/PriorityProducts/tabid/56053/Default.aspx |title=Priority products and materials: assessing the environmental impacts of consumption and production |author=International Resource Panel |publisher=United Nations Environment Programme |year=2010 |accessdate=7 May 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20121224061455/http://www.unep.org/resourcepanel/Publications/PriorityProducts/tabid/56053/Default.aspx |archivedate=24 December 2012 }} 149. ^1 2 UNEP, 2011, Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication, https://www.unenvironment.org/search/node?keys=Towards+a+Green+Economy%3A+Pathways+to+Sustainable+Development+and+Poverty+Eradication 150. ^{{cite web |url=http://www.fao.org/newsroom/en/news/2006/1000448/index.html |title=Livestock a major threat to environment |publisher=UN Food and Agriculture Organization |date=29 November 2006 |accessdate=24 April 2013 |archiveurl=https://web.archive.org/web/20080328062709/http://www.fao.org/newsroom/en/news/2006/1000448/index.html |archivedate=28 March 2008 |deadurl=no}} 151. ^{{cite web |archiveurl=https://web.archive.org/web/20080625012113/http://www.virtualcentre.org/en/library/key_pub/longshad/A0701E00.pdf |archivedate=25 June 2008 |last1=Steinfeld |first1=H. |last2=Gerber |first2=P. |last3=Wassenaar |first3=T. |last4=Castel |first4=V. |last5=Rosales |first5=M. |last6=de Haan |first6=C. |year=2006 |publisher=U.N. Food and Agriculture Organization |location=Rome |url=http://www.virtualcentre.org/en/library/key_pub/longshad/A0701E00.pdf |title=Livestock's Long Shadow – Environmental issues and options |accessdate=5 December 2008}} 152. ^{{cite journal |author1=Vitousek, P. M. |author2=Mooney, H. A. |author3=Lubchenco, J. |author4=Melillo, J. M. |year=1997 |title=Human Domination of Earth's Ecosystems |journal=Science |volume=277 |pages=494–499 |doi=10.1126/science.277.5325.494 |issue=5325|citeseerx=10.1.1.318.6529 }} 153. ^{{cite web|author=Bai, Z.G. |author2=D.L. Dent |author3=L. Olsson |author4=M.E. Schaepman |last-author-amp=yes |date=November 2008 |title=Global assessment of land degradation and improvement: 1. identification by remote sensing |publisher=FAO/ISRIC |url=http://www.isric.org/isric/webdocs/docs/Report%202008_01_GLADA%20international_REV_Nov%202008.pdf |accessdate=24 May 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20131213041558/http://www.isric.org/isric/webdocs/docs/Report%202008_01_GLADA%20international_REV_Nov%202008.pdf |archivedate=13 December 2013 }} 154. ^{{cite journal |author=Carpenter, S. R. |author2=Caraco, N. F. |author3=Correll, D. L. |author4=Howarth, R. W. |author5=Sharpley, A. N. |author6=Smith, V. H. |year=1998 |title=Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen |journal=Ecological Applications |volume=8 |pages=559–568 |doi=10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 |issue=3 |hdl=1808/16724 |hdl-access=free}} 155. ^{{cite journal | last=Hautier | first=Y. | last2=Niklaus | first2=P. A. | last3=Hector | first3=A. | title=Competition for Light Causes Plant Biodiversity Loss After Eutrophication | journal=Science | volume=324 | issue=5927 | date=2009 | doi=10.1126/science.1169640 | pmid=19407202 | pages=636–638| bibcode=2009Sci...324..636H | url=https://www.zora.uzh.ch/id/eprint/18666/2/Hautier_2009.pdf | type=Submitted manuscript }} 156. ^{{cite web |editor=Molden, D. |url=http://www.iwmi.cgiar.org/About_IWMI/Strategic_Documents/Annual_Reports/2006_2007/pdf/IWMI%20Annual%20Report%202006-07.pdf |title=Findings of the Comprehensive Assessment of Water Management in Agriculture |website=Annual Report 2006/2007 |publisher=International Water Management Institute |accessdate=6 January 2014 |deadurl=no |archiveurl=https://web.archive.org/web/20140107031305/http://www.iwmi.cgiar.org/About_IWMI/Strategic_Documents/Annual_Reports/2006_2007/pdf/IWMI%20Annual%20Report%202006-07.pdf |archivedate=7 January 2014 |df=dmy-all }} 157. ^{{cite web |url=http://green.blogs.nytimes.com/2012/08/13/stressed-aquifers-around-the-globe/|title=Stressed Aquifers Around the Globe |author=Li, Sophia |date=13 August 2012 |accessdate=7 May 2013 |website=The New York Times |deadurl=no |archiveurl=https://web.archive.org/web/20130402141530/http://green.blogs.nytimes.com/2012/08/13/stressed-aquifers-around-the-globe/ |archivedate=2 April 2013 |df=dmy-all}} 158. ^{{cite web |url=http://www.fao.org/ag/magazine/0511sp2.htm |title=Water Use in Agriculture |date=November 2005 |publisher=FAO |accessdate=7 May 2013 |deadurl=yes |archiveurl=https://archive.is/20130615091527/http://www.fao.org/ag/magazine/0511sp2.htm |archivedate=15 June 2013 }} 159. ^{{cite web|url=http://www.fao.org/ag/magazine/0303sp1.htm |title=Water Management: Towards 2030 |date=March 2003 |publisher=Food and Agriculture Organization |accessdate=7 May 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20130510184315/http://www.fao.org/ag/magazine/0303sp1.htm |archivedate=10 May 2013 }} 160. ^{{cite web |author1=Pimentel, D. |author2=Culliney, T. W. |author3=Bashore, T. |year=1996 |url=http://ipmworld.umn.edu/chapters/pimentel.htm |archive-url=https://web.archive.org/web/19990218073023/http://ipmworld.umn.edu/chapters/pimentel.htm |dead-url=yes |archive-date=18 February 1999 |title=Public health risks associated with pesticides and natural toxins in foods |website=Radcliffe's IPM World Textbook |accessdate=7 May 2013}} 161. ^WHO. 1992. Our planet, our health: Report of the WHO commission on health and environment. Geneva: World Health Organization. 162. ^1 Chrispeels, M. J.; Sadava, D. E. 1994. "Strategies for Pest Control" pp. 355–383 in Plants, Genes, and Agriculture. Jones and Bartlett, Boston, MA. 163. ^{{cite book |author=Avery, D.T. |year=2000 |title=Saving the Planet with Pesticides and Plastic: The Environmental Triumph of High-Yield Farming |publisher=Hudson Institute |location=Indianapolis}} 164. ^{{cite web |publisher=Center for Global Food Issues |url=http://www.cgfi.org |title=Center for Global Food Issues |accessdate=14 July 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20160221143850/http://www.cgfi.org/ |archivedate=21 February 2016 |df=dmy-all }} 165. ^Lappe, F. M.; Collins, J.; Rosset, P. 1998. "Myth 4: Food vs. Our Environment" pp. 42–57 in World Hunger, Twelve Myths, Grove Press, New York. 166. ^{{Cite journal|author1=Cook, Samantha M. |author2=Khan, Zeyaur R. |author3=Pickett, John A. |year=2007 |title=The use of push-pull strategies in integrated pest management |journal=Annual Review of Entomology |volume=52| pages=375–400 |doi=10.1146/annurev.ento.52.110405.091407 |pmid=16968206}} 167. ^{{cite news |first=Susan |last=Milius |url=https://www.sciencenews.org/article/nutrition-climate-change-top-science-stories-2017-yir|title=Worries grow that climate change will quietly steal nutrients from major food crops|date=December 13, 2017|work=Science News|accessdate=January 21, 2018}} 168. ^Hoffmann, U., Section B: Agriculture – a key driver and a major victim of global warming, in: Lead Article, in: Chapter 1, in {{cite book |editor=Hoffmann, U. |title=Trade and Environment Review 2013: Wake up before it is too late: Make agriculture truly sustainable now for food security in a changing climate |url=http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=666 |publisher=United Nations Conference on Trade and Development (UNCTAD) |location=Geneva, Switzerland |year=2013 |archiveurl=https://web.archive.org/web/20141128140551/http://unctad.org/en/pages/PublicationWebflyer.aspx?publicationid=666 |archivedate=28 November 2014 |df=dmy |pp=3, 5}} 169. ^1 Porter, J. R., et al., Executive summary, in: Chapter 7: Food security and food production systems (archived [https://web.archive.org/web/20141105164634/https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap7_FINAL.pdf 5 November 2014]), in {{cite book | year=2014 | author=IPCC AR5 WG2 A | editor=Field, C. B. | title=Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) | url=http://www.ipcc.ch/report/ar5/wg2/ | publisher=Cambridge University Press |display-editors=etal |pp=488–489}} 170. ^Paragraph 4, in: Summary and Recommendations, in: {{cite book |author=HLPE |title=Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security |url=http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |publisher=Food and Agriculture Organization of the United Nations |location=Rome, Italy |date=June 2012 |archiveurl=https://web.archive.org/web/20141212075812/http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |archivedate=12 December 2014 |df=dmy |p=12}} 171. ^Section 4.2: Agriculture's current contribution to greenhouse gas emissions, in: {{cite book |author=HLPE |title=Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security |url=http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |publisher=Food and Agriculture Organization of the United Nations |location=Rome, Italy |date=June 2012 |archiveurl=https://web.archive.org/web/20141212075812/http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |archivedate=12 December 2014 |df=dmy |pp=67–69}} 172. ^Blanco, G., et al., Section 5.3.5.4: Agriculture, Forestry, Other Land Use, in: Chapter 5: Drivers, Trends and Mitigation (archived [https://web.archive.org/web/20141230092610/http://report.mitigation2014.org/report/ipcc_wg3_ar5_chapter5.pdf 30 December 2014)], in: {{cite book |year=2014 |author=IPCC AR5 WG3 |editor=Edenhofer, O. |title=Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III (WG3) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) |url=http://www.ipcc.ch/report/ar5/wg3/ |publisher=Cambridge University Press |display-editors=etal |deadurl=yes |archiveurl=https://web.archive.org/web/20141127222605/http://www.ipcc.ch/report/ar5/wg3/ |archivedate=27 November 2014 |df=dmy |p=383}}. Emissions aggregated using 100-year global warming potentials from the IPCC Second Assessment Report. 173. ^Porter, J. R., et al., Section 7.5: Adaptation and Managing Risks in Agriculture and Other Food System Activities, in Chapter 7: Food security and food production systems (archived [https://web.archive.org/web/20141105164634/https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap7_FINAL.pdf 5 November 2014]), in {{cite book | year=2014 | author=IPCC AR5 WG2 A | editor=Field, C.B. | title=Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) | url=http://www.ipcc.ch/report/ar5/wg2/ | publisher=Cambridge University Press |display-editors=etal |pp=513–520}} 174. ^Oppenheimer, M., et al., Section 19.7. Assessment of Response Strategies to Manage Risks, in: Chapter 19: Emergent risks and key vulnerabilities (archived [https://web.archive.org/web/20141105164634/https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Chap19_FINAL.pdf 5 November 2014]), in {{cite book | year=2014 | author=IPCC AR5WG2 A | editor=Field, C.B. | title=Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II (WG2) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) | url=http://www.ipcc.ch/report/ar5/wg2/ | publisher=Cambridge University Press |display-editors=etal |p=1080}} 175. ^Summary and Recommendations, in: {{cite book |author=HLPE |title=Food security and climate change. A report by the High Level Panel of Experts (HLPE) on Food Security and Nutrition of the Committee on World Food Security |url=http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |publisher=Food and Agriculture Organization of the United Nations |location=Rome, Italy |date=June 2012 |archiveurl=https://web.archive.org/web/20141212075812/http://www.fao.org/cfs/cfs-hlpe/reports/hlpe-food-security-and-climate-change-report-elaboration-process/en/ |archivedate=12 December 2014 |df=dmy |pp=12–23}} 176. ^Current climate change policies are described in {{cite book |author=Annex I NC |ref=CITEREFAnnex I NC2014 |title=6th national communications (NC6) from Parties included in Annex I to the Convention including those that are also Parties to the Kyoto Protocol |url=http://unfccc.int/national_reports/annex_i_natcom/submitted_natcom/items/7742.php |publisher=United Nations Framework Convention on Climate Change |date=24 October 2014 |archiveurl=https://web.archive.org/web/20140802030817/http://unfccc.int/national_reports/annex_i_natcom/submitted_natcom/items/7742.php |archivedate=2 August 2014 |df=dmy}} and {{citation |author=Non-Annex I NC |ref=CITEREFNon-Annex I NC2014 |title=Non-Annex I national communications |url=http://unfccc.int/national_reports/non-annex_i_natcom/items/2979.php |publisher=United Nations Framework Convention on Climate Change |date=11 December 2014 |archiveurl=https://web.archive.org/web/20140913171139/http://unfccc.int/national_reports/non-annex_i_natcom/items/2979.php |archivedate=13 September 2014 |df=dmy}} 177. ^Smith, P., et al., Executive summary, in: Chapter 5: Drivers, Trends and Mitigation (archived [https://web.archive.org/web/20141230092610/http://report.mitigation2014.org/report/ipcc_wg3_ar5_chapter5.pdf 30 December 2014)], in: {{cite book |year=2014 |author=IPCC AR5 WG3 |editor=Edenhofer, O. |title=Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III (WG3) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) |url=http://www.ipcc.ch/report/ar5/wg3/ |publisher=Cambridge University Press |display-editors=etal |deadurl=yes |archiveurl=https://web.archive.org/web/20141127222605/http://www.ipcc.ch/report/ar5/wg3/ |archivedate=27 November 2014 |df=dmy |pp=816–817}} 178. ^{{cite web |editor=Boelee, E. |url=http://www.iwmi.cgiar.org/topics/ecosystems/ |title=Ecosystems for water and food security |year=2011 |publisher=IWMI/UNEP |accessdate=24 May 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130523025920/http://www.iwmi.cgiar.org/Topics/Ecosystems/ |archivedate=23 May 2013 |df=dmy-all}} 179. ^{{cite web |author=Molden, D. |url=http://www.iwmi.cgiar.org/news_room/pdf/The-scientist_com-Opinion_The%20Water_Deficit.pdf |title=Opinion: The Water Deficit |publisher=The Scientist |accessdate=23 August 2011 |deadurl=no |archiveurl=https://web.archive.org/web/20120113125654/http://www.iwmi.cgiar.org/news_room/pdf/The-scientist_com-Opinion_The%20Water_Deficit.pdf |archivedate=13 January 2012 |df=dmy-all}} 180. ^{{cite web |url=http://croplife.intraspin.com/pesticides/paper.asp?id=461 |author=Safefood Consulting, Inc.|title=Benefits of Crop Protection Technologies on Canadian Food Production, Nutrition, Economy and the Environment |year=2005 |publisher=CropLife International |accessdate=24 May 2013 |deadurl=yes |archiveurl=https://archive.is/20130706005846/http://croplife.intraspin.com/pesticides/paper.asp?id=461 |archivedate=6 July 2013|df=dmy-all}} 181. ^{{cite journal |author=Trewavas, Anthony |title=A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture |journal=Crop Protection |year=2004 |pages=757–781 |doi=10.1016/j.cropro.2004.01.009 |volume=23 |issue=9}} 182. ^{{Cite book |url=https://www.journals.elsevier.com/ecological-modelling |title=Ecological Modelling |deadurl=no |archiveurl=https://web.archive.org/web/20180123072613/https://www.journals.elsevier.com/ecological-modelling |archivedate=23 January 2018 |df=dmy-all}} 183. ^{{cite news |url=https://www.independent.co.uk/news/science/world-oil-supplies-are-set-to-run-out-faster-than-expected-warn-scientists-453068.html |title=World oil supplies are set to run out faster than expected, warn scientists |archiveurl=https://web.archive.org/web/20101021233714/http://www.independent.co.uk/news/science/world-oil-supplies-are-set-to-run-out-faster-than-expected-warn-scientists-453068.html |archivedate=21 October 2010 |work=The Independent |date=14 June 2007 |accessdate=14 July 2016}} 184. ^{{cite web |title=The Future of the Green Revolution: Implications for International Grain Markets |author=Herdt, Robert W. |url=http://www.rockefellerfoundation.org/uploads/files/06132caf-3d72-49e4-817d-ae89e0249d18.pdf |publisher=The Rockefeller Foundation|date=30 May 1997 |accessdate=16 April 2013 |page=2 |deadurl=no |archiveurl=https://web.archive.org/web/20121019153636/http://www.rockefellerfoundation.org/uploads/files/06132caf-3d72-49e4-817d-ae89e0249d18.pdf |archivedate=19 October 2012 |df=dmy-all}} 185. ^1 2 3 {{cite web |author=Schnepf, Randy |date=19 November 2004 |title=Energy use in Agriculture: Background and Issues |website=CRS Report for Congress |url=http://www.nationalaglawcenter.org/wp-content/uploads/assets/crs/RL32677.pdf |publisher=Congressional Research Service |accessdate=26 September 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130927190908/http://www.nationalaglawcenter.org/wp-content/uploads/assets/crs/RL32677.pdf |archivedate=27 September 2013 |df=dmy-all}} 186. ^{{cite web|author=White, Rebecca |year=2007 |title=Carbon governance from a systems perspective: an investigation of food production and consumption in the UK |publisher=Oxford University Center for the Environment |url=http://www.eci.ox.ac.uk/research/energy/downloads/eceee07/white.pdf |deadurl=yes |archiveurl=https://web.archive.org/web/20110719044949/http://www.eci.ox.ac.uk/research/energy/downloads/eceee07/white.pdf |archivedate=19 July 2011 }} 187. ^1 {{cite web |author1=Canning, Patrick |author2=Charles, Ainsley |author3=Huang, Sonya |author4=Polenske, Karen R. |author5=Waters, Arnold |year=2010 |title=Energy Use in the U.S. Food System |website=USDA Economic Research Service Report No. ERR-94 |publisher=United States Department of Agriculture |url=http://www.ers.usda.gov/Publications/ERR94/ |deadurl=yes |archiveurl=https://web.archive.org/web/20100918182458/http://www.ers.usda.gov/publications/err94/ |archivedate=18 September 2010 |df=dmy-all }} 188. ^{{cite journal |last1=Wallgren |first1=Christine |last2=Höjer |first2=Mattias|title=Eating energy – Identifying possibilities for reduced energy use in the future food supply system |journal=Energy Policy |volume=37 |issue=12 |year=2009 |pages=5803–5813 |doi=10.1016/j.enpol.2009.08.046}} 189. ^{{cite journal |title=Energy and the food system |author1=Woods, Jeremy |author2=Williams, Adrian |author3=Hughes, John K. |author4=Black, Mairi |author5=Murphy, Richard |date=August 2010 |doi=10.1098/rstb.2010.0172 |pmid=20713398 |pmc=2935130 |journal=Philosophical Transactions of the Royal Society |volume=365 |pages=2991–3006 |issue=1554 |doi-access=free |df=dmy-all}} 190. ^{{cite web |author1=Heller, Martin |author2=Keoleian, Gregory |year=2000 |title=Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System |publisher=University of Michigan Center for Sustainable Food Systems |url=http://css.snre.umich.edu/css_doc/CSS00-04.pdf |accessdate=17 March 2016 |deadurl=yes |archiveurl=https://web.archive.org/web/20160314094203/http://css.snre.umich.edu/css_doc/CSS00-04.pdf |archivedate=14 March 2016 }} 191. ^{{cite web |url=http://www.uidaho.edu/cals/aers/agriculturaleconomics |title=Agricultural Economics |publisher=University of Idaho |accessdate=16 April 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20130401181613/http://www.uidaho.edu/cals/aers/agriculturaleconomics |archivedate=1 April 2013}} 192. ^{{cite web |url=http://ageconsearch.umn.edu/bitstream/13649/1/wp06-01.pdf |page=4 |title=Agricultural Economics: A Brief Intellectual History |author=Runge, C. Ford |date=June 2006 |accessdate=16 September 2013 |publisher=Center for International Food and Agriculture Policy |deadurl=no |archiveurl=https://web.archive.org/web/20131021133005/http://ageconsearch.umn.edu/bitstream/13649/1/wp06-01.pdf |archivedate=21 October 2013 |df=dmy-all}} 193. ^{{cite web |url=http://digital.library.okstate.edu/encyclopedia/entries/t/te009.html |title=Tenant Farming and Sharecropping |website=Encyclopedia of Oklahoma History and Culture |publisher=Oklahoma Historical Society |author=Conrad, David E. |accessdate=16 September 2013 |deadurl=yes |archiveurl=https://web.archive.org/web/20130527204119/http://digital.library.okstate.edu/encyclopedia/entries/T/TE009.html |archivedate=27 May 2013 |df=dmy-all}} 194. ^{{cite book |url={{google books|plainurl=y|id=_YjJc_c4BxsC|page=43}} |title=Medieval Castles |publisher=Greenwood Publishing Group |author=Stokstad, Marilyn |isbn=978-0-313-32525-0 |year=2005 |accessdate=17 March 2016 |deadurl=no |archiveurl=https://web.archive.org/web/20161117123730/{{google books|plainurl=y|id=_YjJc_c4BxsC|page=43}}|page=43 |archivedate=17 November 2016 |df=dmy-all}} 195. ^{{cite journal |author=Sexton, R. J. |year=2000 |title=Industrialization and Consolidation in the US Food Sector: Implications for Competition and Welfare |journal=American Journal of Agricultural Economics |volume=82 |issue=5 |pages=1087–1104 |doi=10.1111/0002-9092.00106}} 196. ^{{cite web |title=The Anti-Corn Law League |url=http://www.liberalhistory.org.uk/history/anti-corn-law-league/ |website=Liberal History |accessdate=26 March 2018}} 197. ^1 {{cite web |url=https://openknowledge.worldbank.org/bitstream/handle/10986/4101/WPS4864.pdf?sequence=1 |title=How Do Agricultural Policy Restrictions to Global Trade and Welfare Differ across Commodities? |author1=Lloyd, Peter J. |author2=Croser, Johanna L. |author3=Anderson, Kym |website=Policy Research Working Paper #4864 |publisher=The World Bank |accessdate=16 April 2013 |date=March 2009 |pages=2–3 |deadurl=no |archiveurl=https://web.archive.org/web/20130605125346/https://openknowledge.worldbank.org/bitstream/handle/10986/4101/WPS4864.pdf?sequence=1 |archivedate=5 June 2013 |df=dmy-all }} 198. ^{{cite web |url=https://openknowledge.worldbank.org/bitstream/handle/10986/8699/wps3901.pdf?sequence=1 |title=Do Global Trade Distortions Still Harm Developing Country Farmers? |author1=Anderson, Kym |author2=Valenzuela, Ernesto |website=World Bank Policy Research Working Paper 3901 |date=April 2006 |publisher=World Bank |accessdate=16 April 2013 |pages=1–2 |deadurl=no |archiveurl=https://web.archive.org/web/20130605145451/https://openknowledge.worldbank.org/bitstream/handle/10986/8699/wps3901.pdf?sequence=1 |archivedate=5 June 2013 |df=dmy-all}} 199. ^{{Cite news |url=https://www.theguardian.com/global-development/poverty-matters/2011/may/24/american-cotton-subsidies-illegal-obama-must-act |title=America's $24bn subsidy damages developing world cotton farmers |author=Kinnock, Glenys |date=24 May 2011 |accessdate=16 April 2013 |newspaper=The Guardian |deadurl=no |archiveurl=https://web.archive.org/web/20130906122834/http://www.theguardian.com/global-development/poverty-matters/2011/may/24/american-cotton-subsidies-illegal-obama-must-act |archivedate=6 September 2013 |df=dmy-all}} 200. ^{{cite web |title=Agriculture's Bounty |url=http://www.ibrc.indiana.edu/studies/AgriculturesBounty.pdf |date=May 2013 |accessdate=19 August 2013 |deadurl=no |archiveurl=https://web.archive.org/web/20130826100413/http://www.ibrc.indiana.edu/studies/AgriculturesBounty.pdf |archivedate=26 August 2013 |df=dmy-all}} 201. ^{{cite book | last=Bosso | first=Thelma | title=Agricultural Science | publisher=Callisto Reference | year=2015 | isbn=978-1-63239-058-5}} 202. ^{{cite book | last=Boucher | first=Jude | title=Agricultural Science and Management | publisher=Callisto Reference | year=2018 | isbn=978-1-63239-965-6}} 203. ^John Armstrong, Jesse Buel. A Treatise on Agriculture, The Present Condition of the Art Abroad and at Home, and the Theory and Practice of Husbandry. To which is Added, a Dissertation on the Kitchen and Garden. 1840. p. 45. 204. ^{{cite web|title=The Long Term Experiments|url=https://www.rothamsted.ac.uk/long-term-experiments|publisher=Rothamsted Research|accessdate=26 March 2018}} 205. ^{{cite journal | last=Silvertown | first=Jonathan | last2=Poulton | first2=Paul | last3=Johnston | first3=Edward | last4=Edwards | first4=Grant | last5=Heard | first5=Matthew | last6=Biss | first6=Pamela M. | title=The Park Grass Experiment 1856-2006: its contribution to ecology | journal=Journal of Ecology | volume=94 | issue=4 | date=2006 | doi=10.1111/j.1365-2745.2006.01145.x | pages=801–814}} 206. ^Hillison, J. (1996). The Origins of Agriscience: Or Where Did All That Scientific Agriculture Come From? {{Webarchive|url=https://web.archive.org/web/20081002140821/http://pubs.aged.tamu.edu/jae/pdf/vol37/37-04-08.pdf |date=2 October 2008 }}. Journal of Agricultural Education. 207. ^Coulson, J. R.; Vail, P. V.; Dix M. E.; Nordlund, D. A.; Kauffman, W. C.; Eds. 2000. 110 years of biological control research and development in the United States Department of Agriculture: 1883–1993. U.S. Department of Agriculture, Agricultural Research Service. pages=3–11 208. ^{{cite web |title=History and Development of Biological Control (notes) |accessdate=10 April 2017 |publisher=University of California Berkeley |url=https://nature.berkeley.edu/biocon/BC%20Class%20Notes/6-11%20BC%20History.pdf |deadurl=yes |archiveurl=https://web.archive.org/web/20151124001647/http://nature.berkeley.edu/biocon/BC%20Class%20Notes/6-11%20BC%20History.pdf |archivedate=24 November 2015 |df=}} 209. ^{{cite web|last1=Reardon |first1=Richard C. |title=Biological Control of The Gypsy Moth: An Overview |url=http://www.main.nc.us/SERAMBO/BControl/gypsy.html#conclu |website=Southern Appalachian Biological Control Initiative Workshop |accessdate=10 April 2017 |deadurl=no |archiveurl=https://web.archive.org/web/20160905052259/http://www.main.nc.us/SERAMBO/BControl/gypsy.html |archivedate=5 September 2016}} 210. ^{{cite web |title=Meat Atlas |publisher=Heinrich Boell Foundation, Friends of the Earth Europe |year=2014 |url=https://www.foeeurope.org/meat-atlas }} 211. ^{{cite journal |page=13 |title=Agricultural and food policy choices in Australia |journal=Sustainable Agriculture and Food Policy in the 21st Century: Challenges and Solutions |date=October 2010 |accessdate=22 April 2013 |author1=Hogan, Lindsay |author2=Morris, Paul |url=http://coserve.com.au/PDF/VirtualMeeting/ABARE-Agric_food_policy_CONFERENCE_PAPER-2010.pdf}} 212. ^{{cite web |url=https://europa.eu/european-union/topics/agriculture_en |title=Agriculture: Not Just Farming |publisher=European Union |accessdate=8 May 2018 |date=2016-06-16 }} 213. ^{{cite journal |url=http://faculty.missouri.edu/ikerdj/papers/SFT-Corporatization%20of%20Fm%20Pol%20(9-10).htm |title=Corporatization of Agricultural Policy |author=Ikerd, John |journal=Small Farm Today Magazine |year=2010 |deadurl=no |archiveurl=https://web.archive.org/web/20160807024012/http://faculty.missouri.edu/ikerdj/papers/SFT-Corporatization%20of%20Fm%20Pol%20(9-10).htm |archivedate=7 August 2016 |df=dmy-all}} 214. ^{{cite news |url=https://www.theguardian.com/environment/2010/sep/22/food-firms-lobbying-samuel-jutzi |title=Corporate Lobbying Is Blocking Food Reforms, Senior UN Official Warns: Farming Summit Told of Delaying Tactics by Large Agribusiness and Food Producers on Decisions that Would Improve Human Health and the Environment |author=Jowit, Juliette |date=22 September 2010 |newspaper=The Guardian |publisher=Guardian Media Group |accessdate=8 May 2018}} External links{{Portal bar|Agriculture and agronomy|Anthropology|Archaeology|Drink|Food}}{{Wikiquote}}
3 : Agriculture|Agronomy|Food industry |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。