请输入您要查询的百科知识:

 

词条 Inductrack
释义

  1. Description

  2. References

  3. External links

     Patents 
{{Use dmy dates|date=July 2013}}

Inductrack is a passive, fail-safe electrodynamic magnetic levitation system, using only unpowered loops of wire in the track and permanent magnets (arranged into Halbach arrays) on the vehicle to achieve magnetic levitation. The track can be in one of two configurations, a "ladder track" and a "laminated track". The ladder track is made of unpowered Litz wire cables, and the laminated track is made out of stacked copper or aluminium sheets.

There are three designs: Inductrack I, which is optimized for high speed operation, Inductrack II, which is more efficient at lower speeds, and Inductrack III, which is intended for heavy loads at low speed.

Inductrack (or Inductrak) was invented by a team of scientists at Lawrence Livermore National Laboratory in California, headed by physicist Richard F. Post, for use in maglev trains, based on technology used to levitate flywheels.[1][2][3] At constant velocity, power is required only to push the train forward against air and electromagnetic drag. Above a minimum speed, as the velocity of the train increases, the levitation gap, lift force and power used are largely constant. The system can lift 50 times the magnet weight.

Description

The name inductrack comes from the word inductance or inductor; an electrical device made from loops of wire. As a Halbach magnet array passes over the loops of wire, the sinusoidal variations in the field induce a voltage in the track coils. At low speeds the loops are a largely resistive impedance, and hence the induced currents are highest where the field is changing most quickly, which is around the least intense parts of the field, thus little lift produced.

However, at speed, the impedance of the coils increases, proportionate to speed, and dominates the composite impedance of the coil assemblies. This delays the phase of the current peak so that induced current in the track tends more closely to coincide with the field peaks of the magnet array. The track thus creates its own magnetic field which lines up with and repels the permanent magnets, creating the levitation effect.[1] The track is well modeled as an array of series RL circuits.

When neodymium–iron–boron permanent magnets are used, levitation is achieved at low speeds. The test model levitated at speeds above {{convert|22|mph|km/h|abbr=on}}, but Richard Post believes that, on real tracks, levitation could be achieved at "as little as {{convert|1|to|2|mph|km/h|1|abbr=on}}". {{citation needed|reason=A direct quote deserves a reference|date=September 2015}} Below the transition speed the magnetic drag increases with vehicle speed; above the transition speed, the magnetic drag decreases with speed.[4] For example, at {{convert|500|km/h|mph|abbr=on}} the lift to drag ratio is 200:1,[5] far higher than any aircraft but much lower than classic steel on steel rail which reaches 1000:1 (rolling resistance). This occurs because the inductive impedance increases proportionately with speed which compensates for the faster rate of change of the field seen by the coils, thus giving a constant current flow and power consumption for the levitation.

The Inductrack II variation uses two Halbach arrays, one above and one below the track, to double the magnetic field without substantially increasing the weight or area of the arrays, while also reducing drag at low speeds.[6]

Several maglev railroad proposals are based upon Inductrack technology. The U.S. National Aeronautics and Space Administration (NASA) is also considering Inductrack technology for launching space planes.[7]

General Atomics is developing Inductrack technology in cooperation with multiple research partners.

Hyperloop Transportation Technologies announced in March of 2016 that they would be using passive Inductrack systems for their titular Hyperloop.[8][9]

References

1. ^{{cite web |url = http://www.llnl.gov/str/Post.html |title = A New Approach for Magnetically Levitating Trains — and Rockets |publisher = llnl.gov |accessdate = 2009-09-07}}
2. ^{{cite web|url=http://www.skytran.net/press/sciam01.htm |author=Richard F. Post |title=MagLev: A New Approach |publisher=Scientific American |date=January 2000 |deadurl=yes |archiveurl=https://web.archive.org/web/20050309114627/http://www.skytran.net/press/sciam01.htm |archivedate=9 March 2005 }}
3. ^{{cite web |url = http://www.askmar.com/Inductrack/2000-4%20Magnetic%20Levitation.pdf |author = Richard F. Post |title = The Inductrack Approach to Magnetic Levitation }}
4. ^Track To The Future: Maglev Trains On Permanent Magnets {{webarchive|url=https://web.archive.org/web/20140327054256/http://www.berdutmagnetech.com/documents/maglev_trains.pdf |date=27 March 2014 }} — Scott R. Gourley — Popular Mechanics
5. ^In "MagLev: A New Approach", above, section on "The Issue of Efficiency" {{webarchive |url=https://web.archive.org/web/20070821042134/http://www.skytran.net/press/sciam03.htm |date=21 August 2007 }}
6. ^Toward More Efficient Transport: The Inductrack Maglev System — Presented by Richard F. Post, 10 October 2005
7. ^{{citation |url=http://www.aip.org/tip/INPHFA/vol-4/iss-4/p12.pdf| title=AIP:Halbach Arrays Enter the Maglev Race|archiveurl=https://web.archive.org/web/20080706153012/http://www.aip.org/tip/INPHFA/vol-4/iss-4/p12.pdf |archivedate=2008-07-06 |accessdate=2015-10-22 |deadurl=yes}}
8. ^{{citation |url=http://www.prnewswire.com/news-releases/hyperloop-transportation-technologies-inc-reveals-hyperloop-levitation-system-300264946.html| title=AIP:Hyperloop Transportation Technologies, Inc. Reveals Hyperloop™ Levitation System|accessdate=2016-05-09}}
9. ^{{cite web|url=https://www.engadget.com/2016/05/09/hyperloop-inductrack-levitation/ |title=Hyperloop taps into government research to float pods|publisher=AOL|work=Engadget|accessdate=11 May 2016}}

External links

  • General Atomics, Urban Maglev(Retrieved 28 May 2013)
  • Lawrence Livermore National Laboratories
  • S&TR article on Inductrack
  • Media articles and technical reports on Inductrack, 1998 to 2005
  • Electric Cargo Conveyor System with Inductrack, General Atomics, Final Report, October 2006
  • The International Maglevboard
  • Inductrack

Patents

  • {{cite patent |country=US |number=5722326 |status=patent |title=Magnetic levitation system for moving objects |gdate=1998-03-03 |inventor=Post, Richard F.}}
  • {{cite patent |country=US |number=6664880 |status=patent |title=Inductrack magnet configuration |gdate=2003-12-16 |inventor=Post, Richard Freeman}}
  • {{cite patent |country=US |number=6758146 |status=patent |title=Laminated track design for inductrack maglev systems |gdate=2004-07-06 |inventor=Post, Richard F.}}
  • {{cite patent |country=US |number=20050204948 |status=patent |title=Inductrack configuration |gdate=2005-09-22 |inventor=Post, Richard Freeman}}
  • {{cite patent |country=US |number=6393993 |status=patent |title=Transit switching system for monorail vehicles |gdate=2002-05-28 |inventor=Reese, Eugene A.}}
{{Maglev}}

2 : Magnetic levitation|Rail technologies

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/23 10:24:00