词条 | 一元方程根的几何意义 | ||
类别 | 中文百科知识 | ||
释义 | 一元方程根的几何意义yiyuan fangcheng gen dejihe yiyi函数y=f(x)在直角坐标平面上的图象是一条曲线(图1). 图1 当曲线y=f(x)与x轴相交时,交点的横坐标就是一元方程f(x)=0的实数根. 图2 当曲线y=f(x)与x轴没有交点时,一元方程f(x)=0没有实数根. 例如,函数y=ax+b(a≠0)的图象是一条直线(图2).一元一次方程ax+b=0(a≠0)的根x=-b/a就是直线y=ax+b与x轴交点(-b/a,0)的横坐标. 又如,函数y=ax2+bx+c(a≠0)的图象是抛物线.一元二次方程ax2+bx+c=0的根就是抛物线与x轴交点的横坐标. 若判别式△=b2-4ac>0,则方程有两个实数根x12=(-b± ![]() ![]()
![]()
图3 若判别式△=b2-4ac=0,则方程有两个实数根x1,2=-b/2a,此时抛物线y=ax2+bx+c与x轴相切于顶点(-b/2a,0)(图4). 图4 若判别式△=b2-4ac<0,则方程没有实数根,此时抛物线y=ax2+bx+c与x轴没有公共点(图5). 图5 |
||
随便看 |
开放百科全书收录579518条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。