请输入您要查询的百科知识:

 

词条 Coq
释义

  1. Overview

  2. Four color theorem and ssreflect extension

  3. Applications

  4. See also

  5. References

  6. External links

{{About||the coenzyme and dietary supplement|Coenzyme Q10|the abbreviated placename|Coquihalla (disambiguation){{!}}Coquihalla| the cockerel|Rooster}}{{self-contradictory|about=the date when the surveyable proof of the four color theorem was completed|date=January 2017}}{{Infobox software
| name = Coq (software)
| logo = Coq logo.png
| screenshot =
| caption =
| developer = The Coq development team
| released = {{Start date and age|1989|5|1|df=yes}} (version 4.10)
| latest release version = 8.9.0[1]
| latest release date = {{release_date|2019|1|18|df=yes}}
| latest preview version =
| latest preview date =
| platform =
| operating system = Cross-platform
| language = English
| programming language = OCaml
| genre = Proof assistant
| license = LGPL 2.1
| website = {{url|https://coq.inria.fr/}}
| repo = {{url|https://github.com/coq/coq}}
}}{{Infobox programming language
| name = Coq (programming language)
| logo =
| paradigm = Functional
| year = 1984[2]
| designer =
| developer =
| latest_release_version =
| latest_release_date =
| latest_test_version =
| latest_test_date =
| turing-complete = No
| typing = static, strong
| implementations =
| dialects = LEGO (proof assistant)
| influenced = Agda, Idris, Matita, Albatross
| influenced_by = ML (programming), LCF (proof methods), Automath (hybrid programming/proving), System F and intuitionistic type theory (language)
| license =
| website = {{url|https://coq.inria.fr/}}
| file ext = .v
| operating_system =
}}

In computer science, Coq is an interactive theorem prover. It allows the expression of mathematical assertions, mechanically checks proofs of these assertions, helps to find formal proofs, and extracts a certified program from the constructive proof of its formal specification. Coq works within the theory of the calculus of inductive constructions, a derivative of the calculus of constructions. Coq is not an automated theorem prover but includes automatic theorem proving tactics and various decision procedures.

The Association for Computing Machinery rewarded Thierry Coquand, Gérard Pierre Huet, Christine Paulin-Mohring, Bruno Barras, Jean-Christophe Filliâtre, Hugo Herbelin, Chetan Murthy, Yves Bertot and Pierre Castéran with the 2013 ACM Software System Award for Coq.

Overview

Seen as a programming language, Coq implements a dependently typed functional programming language,[3] while seen as a logical system, it implements a higher-order type theory. The development of Coq has been supported since 1984 by INRIA, now in collaboration with École Polytechnique, University of Paris-Sud, Paris Diderot University and CNRS. In the 1990s, École Normale Supérieure de Lyon was also part of the project. The development of Coq was initiated by Gérard Pierre Huet and Thierry Coquand, after which more than 40 people, mainly researchers, contributed features of the core system. The implementation team was successively coordinated by Gérard Pierre Huet, Christine Paulin-Mohring and Hugo Herbelin. Coq is for the most part implemented in OCaml with a bit of C. The core system can be extended due to a mechanism of plug-ins.[4]

The word coq means "rooster" in French, and stems from a local tradition of naming French research development tools with animal names.[5] Up to 1991, Coquand was implementing a language called the Calculus of Constructions and it was simply called CoC at this time. In 1991, a new implementation based on the extended Calculus of Inductive Constructions was started and the name changed from CoC to Coq, also an indirect reference to Thierry Coquand who developed the Calculus of Constructions along with Gérard Pierre Huet and the Calculus of Inductive Constructions along with Christine Paulin-Mohring.[6]

Coq provides a specification language called Gallina[7] (meaning hen in Spanish and Italian).

Programs written in Gallina have the weak normalization property – they always terminate.

This is one way to avoid the halting problem.

This may be surprising, since infinite loops (non-termination) are common in other programming languages.[8]

Four color theorem and ssreflect extension

Georges Gonthier (of Microsoft Research, in Cambridge, England) and Benjamin Werner (of INRIA) used Coq to create a surveyable proof of the four color theorem, which was completed in September 2004.[9]

Based on this work, a significant extension to Coq was developed called Ssreflect (which stands for "small scale reflection").[10] Despite the name, most of the new features added to Coq by Ssreflect are general-purpose features, useful not merely for the computational reflection style of proof. These include:

  • Additional convenient notations for irrefutable and refutable pattern matching, on inductive types with one or two constructors
  • Implicit arguments for functions applied to zero arguments – which is useful when programming with higher-order functions
  • Concise anonymous arguments
  • An improved set tactic with more powerful matching
  • Support for reflection

Ssreflect 1.4 is freely available dual-licensed under the open source CeCILL-B or CeCILL-2.0 license, and is compatible with Coq 8.4.[11]

Applications

  • CompCert: an optimizing compiler for almost all of the C programming language which is fully programmed and proved in Coq.
  • Disjoint-set data structure: correctness proof in Coq was published in 2007.[12]
  • Feit–Thompson theorem: formal proof using Coq was completed in September 2012.[13]
  • Four color theorem: formal proof using Coq was completed in 2005.[14]

See also

{{Portal|Mathematics|Free and open-source software}}
  • Agda
  • Calculus of constructions
  • Curry–Howard correspondence
  • Isabelle (proof assistant) – similar/competing software
  • Intuitionistic type theory
  • HOL (proof assistant)

References

1. ^{{cite web|title=Coq 8.9.0 is out|url=https://coq.inria.fr/news/coq-890-is-out.html|date=2019-01-18}}
2. ^What is Coq?. Coq.inria.fr. Retrieved on 2013-07-21.
3. ^A short introduction to Coq,
4. ^{{cite web |last1=Avigad |first1=Jeremy |last2=Mahboubi |first2=Assia |title=Interactive Theorem Proving: 9th International Conference, ITP 2018, Held as ... |url=https://books.google.com/books?id=I-tiDwAAQBAJ&pg=PA21&lpg=PA21&dq=%22coq%22,%22plugins%22,%22extended%22&source=bl&ots=jZCIJLbAMu&sig=KGu5gl-mDQ-h0Fmi35Xo0Li99aQ&hl=en&sa=X&ved=2ahUKEwi6oKyEj5jeAhXnqFkKHU44DQAQ6AEwBXoECAUQAQ#v=onepage&q=%22coq%22%2C%22plugins%22%2C%22extended%22&f=false |website=Google Books |publisher=Google Books |accessdate=21 October 2018}}
5. ^{{cite web|title=Frequently Asked Questions|url=https://coq.inria.fr/faq#htoc4|accessdate=2017-06-09}}
6. ^{{cite web |title=Introduction to the Calculus of Inductive Constructions |url=Introduction to the Calculus of Inductive Constructions - ResearchGate |website=Research Gate |publisher=Research Gate |accessdate=21 October 2018}}
7. ^Adam Chlipala."Certified Programming with Dependent Types":"Library Universes".
8. ^Adam Chlipala."Certified Programming with Dependent Types":"Library GeneralRec"."Library InductiveTypes".
9. ^{{cite web|title=Development of theories and tactics: Four Color Theorem|url=https://raweb.inria.fr/rapportsactivite/RA2004/logical/uid40.html}}
10. ^Georges Gonthier, Assia Mahboubi."An introduction to small scale reflection in Coq":"Journal of Formalized Reasoning".
11. ^{{cite web|url=http://www.msr-inria.fr/news/ssreflect-1-4/ |title=Ssreflect 1.4 has been released – Microsoft Research Inria Joint Centre |publisher=Msr-inria.fr |date= |accessdate=2014-01-27}}
12. ^{{Citation |first=Sylvain |last=Conchon |first2=Jean-Christophe |last2=Filliâtre |contribution=A Persistent Union-Find Data Structure |title=ACM SIGPLAN Workshop on ML |location=Freiburg, Germany |date=October 2007|url=https://www.lri.fr/~filliatr/puf/}}
13. ^{{cite web |url=http://www.msr-inria.fr/news/feit-thomson-proved-in-coq/ |title=Feit-Thompson theorem has been totally checked in Coq |publisher=Msr-inria.inria.fr |date=2012-09-20 |accessdate=2012-09-25 |archiveurl=https://web.archive.org/web/20161119094854/http://www.msr-inria.fr/news/feit-thomson-proved-in-coq/ |archive-date=2016-11-19 |deadurl=yes |df= }}
14. ^{{Citation |last=Gonthier |first=Georges |title=Formal Proof—The Four-Color Theorem |periodical=Notices of the American Mathematical Society |volume=55 |year=2008|url=http://www.ams.org/notices/200811/tx081101382p.pdf |issue=11 |pages=1382–1393 | mr=2463991}}

External links

{{Commons category|Coq}}
  • The Coq proof assistant – the official English website
  • [https://github.com/coq/coq coq/coq] – the project's source code repository on GitHub
  • [https://x80.org/rhino-coq/ JsCoq Interactive Online System] – allows Coq to be run in a web browser, without the need for any software installation
  • [https://github.com/coq/coq/wiki Coq Wiki]
  • [https://math-comp.github.io/math-comp/ Mathematical Components library] – widely used library of mathematical structures, part of which is the Ssreflect proof language
  • Constructive Coq Repository at Nijmegen
  • [https://math-classes.github.io/ Math Classes]
  • {{Openhub|coq|Coq}}
Textbooks
  • The Coq'Art – a book on Coq by Yves Bertot and Pierre Castéran
  • Certified Programming with Dependent Types – online and printed textbook by Adam Chlipala
  • Software Foundations – online textbook by Benjamin C. Pierce et al.
  • An introduction to small scale reflection in Coq – a tutorial on SSreflect by Georges Gonthier and Assia Mahboubi
Tutorials
  • Introduction to the Coq Proof Assistant – video lecture by Andrew Appel at Institute for Advanced Study
  • Video tutorials for the Coq proof assistant by Andrej Bauer.

10 : Proof assistants|Free theorem provers|Dependently typed languages|Educational math software|OCaml software|Free software programmed in OCaml|Functional languages|Programming languages created in 1984|1989 software|Extensible syntax programming languages

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/14 13:51:22