词条 | CMYK color model | ||||||||||||||||||||
释义 |
{{redirect|CMYK|the extended play by James Blake|CMYK (EP)}} {{redirect|CMYB|the cMyb gene|MYB (gene)}}{{refimprove|date=May 2017}}{{double image|right|CMYK color swatches.svg|150| CMYK subtractive color mixing.svg |150|Color printing typically uses ink of four colors: cyan, magenta, yellow, and black. |When CMY “primaries” are combined at full strength, the resulting “secondary” mixtures are red, green, and blue. Mixing all three gives an imperfect black or a perfect grey.}}{{Multiple image|direction=vertical |image1=CMYK closeup.jpg |image2=CMYK under a microscope.jpg |caption2=What appears as cerulean ({{Color sample|#489490}}) in the top image is actually a blend of cyan, magenta, yellow and black, as magnification under a microscope demonstrates. }} The CMYK color model (process color, four color) is a subtractive color model, used in color printing, and is also used to describe the printing process itself. CMYK refers to the four inks used in some color printing: cyan, magenta, yellow, and key. The CMYK model works by partially or entirely masking colors on a lighter, usually white, background. The ink reduces the light that would otherwise be reflected. Such a model is called subtractive because inks "subtract" the colors red, green and blue from white light. White light minus red leaves cyan, white light minus green leaves magenta, and white light minus blue leaves yellow. In additive color models, such as RGB, white is the "additive" combination of all primary colored lights, while black is the absence of light. In the CMYK model, it is the opposite: white is the natural color of the paper or other background, while black results from a full combination of colored inks. To save cost on ink, and to produce deeper black tones, unsaturated and dark colors are produced by using black ink instead of the combination of cyan, magenta, and yellow. Halftoning{{main|Halftone}}With CMYK printing, halftoning (also called screening) allows for less than full saturation of the primary colors; tiny dots of each primary color are printed in a pattern small enough that humans perceive a solid color. Magenta printed with a 20% halftone, for example, produces a pink color, because the eye perceives the tiny magenta dots on the large white paper as lighter and less saturated than the color of pure magenta ink. Without halftoning, the three primary process colors could be printed only as solid blocks of color, and therefore could produce only seven colors: the three primaries themselves, plus three secondary colors produced by layering two of the primaries: cyan and yellow produce green, cyan and magenta produce blue, yellow and magenta produce red (these subtractive secondary colors correspond roughly to the additive primary colors), plus layering all three of them resulting in black. With halftoning, a full continuous range of colors can be produced. Screen angle{{main|Screen angle}}To improve print quality and reduce moiré patterns, the screen for each color is set at a different angle. While the angles depend on how many colors are used and the preference of the press operator, typical CMYK process printing uses any of the following screen angles:[1][2]
Benefits of using black ink{{multiple image|width=197|image1=CMYK separation – no black.jpg|image2=CMYK separation – maximum black.jpg|197|The image above, separated for printing with process cyan, magenta, and yellow inks.|footer=The same image, this time separated with maximum black, to minimize colored-inks use.}}The "black" generated by mixing commercially practical cyan, magenta, and yellow inks is unsatisfactory, so four-color printing uses black ink in addition to the subtractive primaries. Common reasons for using black ink include:[3]
When a very dark area is desirable, a colored or gray CMY "bedding" is applied first, then a full black layer is applied on top, making a rich, deep black; this is called rich black.[4] A black made with just CMY inks is sometimes called a composite black. The amount of black to use to replace amounts of the other ink is variable, and the choice depends on the technology, paper and ink in use. Processes called under color removal, under color addition, and gray component replacement are used to decide on the final mix; different CMYK recipes will be used depending on the printing task. Other printer color modelsCMYK or process color printing is contrasted with spot color printing, in which specific colored inks are used to generate the colors appearing on paper. Some printing presses are capable of printing with both four-color process inks and additional spot color inks at the same time. High-quality printed materials, such as marketing brochures and books, often include photographs requiring process-color printing, other graphic effects requiring spot colors (such as metallic inks), and finishes such as varnish, which enhances the glossy appearance of the printed piece. CMYK are the process printers which often have a relatively small color gamut. Processes such as Pantone's proprietary six-color (CMYKOG) Hexachrome considerably expand the gamut. Light, saturated colors often cannot be created with CMYK, and light colors in general may make visible the halftone pattern. Using a CcMmYK process, with the addition of light cyan and magenta inks to CMYK, can solve these problems, and such a process is used by many inkjet printers, including desktop models.[5] Comparison with RGB displaysComparisons between RGB displays and CMYK prints can be difficult, since the color reproduction technologies and properties are very different. A computer monitor mixes shades of red, green, and blue light to create color pictures. A CMYK printer instead uses light-absorbing cyan, magenta, and yellow inks, whose colors are mixed using dithering, halftoning, or some other optical technique. Similar to monitors, the inks used in printing produce a color gamut that is "only a subset of the visible spectrum" although both color modes have their own specific ranges. As a result of this, items which are displayed on a computer monitor may not completely match the look of items which are printed if opposite color modes are being combined in both mediums.[6] When designing items to be printed, designers view the colors which they are choosing on an RGB color mode (their computer screen), and it is often difficult to visualize the way in which the color will turn out post-printing because of this. Spectrum of printed paperTo reproduce color, the CMYK color model codes for absorbing light rather than emitting it (as is assumed by RGB). The 'K' component absorbs all wavelengths and is therefore achromatic. The Cyan, Magenta, and Yellow components are used for color reproduction and they may be viewed as the inverse of RGB. Cyan absorbs Red, Magenta absorbs Green, and Yellow absorbs Blue (-R,-G,-B). ConversionSince RGB and CMYK spaces are both device-dependent spaces, there is no simple or general conversion formula that converts between them. Conversions are generally done through color management systems, using color profiles that describe the spaces being converted. Nevertheless, the conversions cannot be exact, particularly where these spaces have different gamuts.{{fact|date=May 2017}} The problem of computing a colorimetric estimate of the color that results from printing various combinations of ink has been addressed by many scientists.[7] A general method that has emerged for the case of halftone printing is to treat each tiny overlap of color dots as one of 8 (combinations of CMY) or of 16 (combinations of CMYK) colors, which in this context are known as Neugebauer primaries. The resultant color would be an area-weighted colorimetric combination of these primary colors, except that the Yule–Nielsen effect of scattered light between and within the areas complicates the physics and the analysis; empirical formulas for such analysis have been developed, in terms of detailed dye combination absorption spectra and empirical parameters.[7] See also
References1. ^Campbell, Alastair. The Designer's Lexicon. 2000 Chronicle, San Francisco. p 192 2. ^McCue, Claudia. Real World Print Production. 2007 Peachpit, Berkeley. p 31. 3. ^{{cite book | title = WWW.Color | author = Roger Pring | url = https://books.google.com/books?id=Uq-hLlV-h7sC&pg=PT178&dq=cmyk+key+black+subtractive+model&ie=ISO-8859-1| publisher = Watson–Guptill | year = 2000 | isbn = 0-8230-5857-3 }} 4. ^{{cite book |title=The Guild Handbook of Scientific Illustration |author=R. S. Hodges |url=https://books.google.com/books?id=YWaOBSjevD0C&pg=PA242&dq=cmyk+rich-black|year=2003 |publisher=John Wiley and Sons |isbn=0-471-36011-2 }} 5. ^{{cite book | title = Sams Teach Yourself Adobe Photoshop Elements 2 in 24 Hours | author = Carla Rose | url = https://books.google.com/books?id=odUPNtVGBzcC&pg=PA108&dq=light-magenta+light-cyan| publisher = Sams Publishing | year = 2003 | isbn = 0-672-32430-X }} 6. ^Damien van Holten, print international.org, "RGB Vs CMYK" http://www.printernational.org/rgb-versus-cmyk.php 7. ^1 {{cite book | title = Digital Color Imaging Handbook | author = Gaurav Sharma | year = 2003 | publisher = CRC Press | isbn = 0-8493-0900-X | url = https://books.google.com/books?id=AkByHKRGTsQC&pg=PA68&dq=intitle:color+inauthor:sharma+cmyk+halftone-printers#PPA67,M1 }} External links{{commons category|CMYK}}
3 : Color space|Printing|Printing terminology |
||||||||||||||||||||
随便看 |
|
开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。