请输入您要查询的百科知识:

 

词条 Racah W-coefficient
释义

  1. Recoupling coefficients

  2. Algebra

  3. Relation to Wigner's 6-j symbol

  4. See also

  5. Notes

  6. Further reading

  7. External links

Racah's W-coefficients were introduced by Giulio Racah in 1942.[1] These coefficients have a purely mathematical definition. In physics they are used in calculations involving the quantum mechanical description of angular momentum, for example in atomic theory.

The coefficients appear when there are three sources of angular momentum in the problem. For example, consider an atom with one electron in an s orbital and one electron in a p orbital. Each electron has electron spin angular momentum and in addition

the p orbital has orbital angular momentum (an s orbital has zero orbital angular momentum). The atom may be described by LS coupling or by jj coupling as explained in the article on angular momentum coupling. The transformation between the wave functions that correspond to these two couplings involves a Racah W-coefficient.

Apart from a phase factor, Racah's W-coefficients are equal to Wigner's 6-j symbols, so any equation involving Racah's W-coefficients may be rewritten using 6-j symbols. This is often advantageous because the symmetry properties of 6-j symbols are easier to remember.

Racah coefficients are related to recoupling coefficients by

Recoupling coefficients are elements of a unitary transformation and their definition is given in the next section. Racah coefficients have more convenient symmetry properties than the recoupling coefficients (but less convenient than the 6-j symbols).[2]

Recoupling coefficients

Coupling of two angular momenta and is the construction of simultaneous eigenfunctions of and , where , as explained in the article on Clebsch–Gordan coefficients. The result is

where and .

Coupling of three angular momenta , , and , may be done by first coupling and to and next coupling and to total angular momentum :

Alternatively, one may first couple and to and next couple and to :

Both coupling schemes result in complete orthonormal bases for the dimensional space spanned by

Hence, the two total angular momentum bases are related by a unitary transformation. The matrix elements of this unitary transformation are given by a scalar product and are known as recoupling coefficients. The coefficients are independent of and so we have

The independence of follows readily by writing this equation for and applying the lowering operator to both sides of the equation.

Algebra

Let

be the usual triangular factor, then the Racah coefficient is a product

of four of these by a sum over factorials,

where

and

The sum over is finite over the range[3]

Relation to Wigner's 6-j symbol

Racah's W-coefficients are related to Wigner's 6-j symbols, which have even more convenient symmetry properties

Cf.[4] or

See also

  • Clebsch–Gordan coefficients
  • 3-jm symbol
  • 6-j symbol
  • Pandya theorem

Notes

1. ^{{Cite journal |first=G. |last=Racah |title=Theory of Complex Spectra II |journal=Physical Review |volume=62 |issue=9–10 |pages=438–462 |year=1942 |doi=10.1103/PhysRev.62.438 |bibcode = 1942PhRv...62..438R }}
2. ^Rose, M. E. (1957). Elementary theory of angular momentum (Dover).
3. ^Cowan, R D (1981). The theory of atomic structure and spectra (Univ of California Press), p. 148.
4. ^Brink, D M & Satchler, G R (1968). Angular Momentum (Oxford University Press) 3 ed., p. 142. [https://archive.org/details/AngularMomentum online]

Further reading

  • {{cite book |last= Edmonds |first= A. R. |title= Angular Momentum in Quantum Mechanics |year= 1957

|publisher= Princeton University Press |location= Princeton, New Jersey |isbn= 0-691-07912-9}}
  • {{cite book |last= Condon |first= Edward U. |author2=Shortley, G. H. |title= The Theory of Atomic Spectra |year= 1970

|publisher= Cambridge University Press |location= Cambridge |isbn= 0-521-09209-4 |chapter= Chapter 3}}
  • {{cite book |last= Messiah |first= Albert |title= Quantum Mechanics (Volume II) |year= 1981 | edition= 12th

|publisher= North Holland Publishing |location= New York |isbn= 0-7204-0045-7}}
  • {{cite journal

|first=Masachiyo
|last1=Sato
|journal=Progr. Theor. Physics
|volume=13
|issue=4
|year=1955
|pages=405–414
|title=General formula of the Racah coefficient
|doi=10.1143/PTP.13.405
|bibcode=1955PThPh..13..405S
}}
  • {{cite book |last= Brink |first= D. M. |author2=Satchler, G. R. |title= Angular Momentum

|year= 1993 |edition= 3rd |publisher= Clarendon Press |location= Oxford |isbn= 0-19-851759-9 |chapter= Chapter 2 }}
  • {{cite book |last= Zare |first= Richard N. |title= Angular Momentum |year=1988

|publisher= John Wiley |location= New York |isbn= 0-471-85892-7 |chapter= Chapter 2}}
  • {{cite book |last= Biedenharn |first= L. C. |author2=Louck, J. D. |title= Angular Momentum in Quantum Physics

|year= 1981 |publisher= Addison-Wesley |location= Reading, Massachusetts |isbn= 0-201-13507-8 }}

External links

  • {{springer|title=Racah-Wigner coefficients|id=p/r110010}}

2 : Rotational symmetry|Representation theory of Lie groups

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/9/20 13:29:47