请输入您要查询的百科知识:

 

词条 Fenchel–Moreau theorem
释义

  1. Statement of theorem

  2. References

In convex analysis, the Fenchel–Moreau theorem (named after Werner Fenchel and Jean Jacques Moreau) or Fenchel biconjugation theorem (or just biconjugation theorem) is a theorem which gives necessary and sufficient conditions for a function to be equal to its biconjugate. This is in contrast to the general property that for any function .[1][2] This can be seen as a generalization of the bipolar theorem.[1] It is used in duality theory to prove strong duality (via the perturbation function).

Statement of theorem

Let be a Hausdorff locally convex space, for any extended real valued function it follows that if and only if one of the following is true

  1. is a proper, lower semi-continuous, and convex function,
  2. , or
  3. .&91;1&93;&91;3&93;&91;4&93;

References

1. ^{{cite book |last1=Borwein |first1=Jonathan |authorlink1=Jonathan Borwein|last2=Lewis |first2=Adrian |title=Convex Analysis and Nonlinear Optimization: Theory and Examples| edition=2 |year=2006 |publisher=Springer |isbn=9780387295701|pages=76–77}}
2. ^{{cite book |last=Zălinescu |first=Constantin |title=Convex analysis in general vector spaces |publisher=World Scientific Publishing Co., Inc. |isbn=981-238-067-1 |mr=1921556 |issue=J |year=2002 |location=River Edge, NJ |pages=75–79}}
3. ^{{cite journal | author = Hang-Chin Lai | author2 = Lai-Jui Lin | date=May 1988 | title = The Fenchel-Moreau Theorem for Set Functions | journal = Proceedings of the American Mathematical Society | publisher = American Mathematical Society | volume = 103 | issue = 1 | pages = 85–90 | doi = 10.2307/2047532 | url = | format = | accessdate = }}
4. ^{{cite journal|title=A generalization of the Fenchel–Moreau theorem|author=Shozo Koshi|author2=Naoto Komuro|journal=Proc. Japan Acad. Ser. A Math. Sci.|volume=59|issue=5|year=1983|pages=178–181}}
{{DEFAULTSORT:Fenchel-Moreau theorem}}

2 : Convex analysis|Theorems in analysis

随便看

 

开放百科全书收录14589846条英语、德语、日语等多语种百科知识,基本涵盖了大多数领域的百科知识,是一部内容自由、开放的电子版国际百科全书。

 

Copyright © 2023 OENC.NET All Rights Reserved
京ICP备2021023879号 更新时间:2024/11/12 3:15:55